Невозможен процесс, при котором теплота переходила самопроизвольно от тел менее нагретых к более нагретым телам.




 

10) СТАТИСТИЧЕСКИЕ И ДИНАМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ

две осн. формы закономерной связи явлений, которые отличаются по характеру вытекающих из них предсказаний. В законах динамич. типа предсказания имеют точно определённый, однозначный характер. Так, в механике, если известен закон движения тела и заданы его координаты и скорость, то по ним можно точно определить положение и скорость движения тела в любой др. момент времени.

В статистич. законах предсказания носят не достоверный, а лишь вероятностный характер. Подобный характер предсказаний обусловлен действием множества случайных факторов, которые имеют место в статистич. коллективах или массовых событиях (напр., большого числа молекул в газе, особей в биологич. популяциях, людей в социальных коллективах). Статистич. закономерность возникает как результат взаимодействия большого числа элементов, составляющих коллектив, и поэтому характеризует не столько поведение отд. элемента, сколько коллектива в целом

Статистич. законы хотя и не дают однозначных и достоверных предсказаний, тем не менее являются единственно возможными при исследовании массовых явлений случайного характера.

Для правильного понимания существа необратимости процессов необходимо сделать следующее уточнение: необратимыми называются такие процессы, которые могут самопроизвольно протекать лишь в одном определенном направлении; в обратном направлении они могут протекать только при внешнем воздействии. Так, можно вновь увеличить размах колебаний маятника, подтолкнув его рукой. Но это увеличение возникает не само собой, а становится возможным в результате более сложного процесса, включающего движение руки. Все процессы самопроизвольно протекают в одном определенном направлении. Они необратимы. Тепло всегда переходит от горячего тела к холодному, а механическая энергия макроскопических тел - во внутреннюю.

11) Распределение Максвелла. Это самое известное распределение молекулярной физики. Оно проверено экспериментально многочисленными опытами. Его график представлен на рисунке. Проанализируем его.


При малых скоростях экспонента близка к единице, и в этой области мы видим обычную параболу, при больших скоростях поведение графика определяется убывающей экспонентой, которая с ростом скорости быстрее стремится к нулю


Вероятность заполнения ячеек с низкими скоростями яв- ляется наиболее высокой, но таких ячеек очень мало из-за небольшого объема шарового слоя при малой скорости.

 

При изменении температуры газа будут изменяться скорости движения всех молекул, а, следовательно, и наиболее вероятная скорость. Поэтому максимум кривой будет смещаться вправо при повышении температуры и влево при понижении температуры. Высота максимума не будет оставаться постоянной.

Кривые распределения молекул по скоростям начинаются в начале координат, асимптотически приближаются к оси абсцисс при бесконечно больших скоростях. Слева от максимума кривые идут круче, чем справа. То, что кривая распределения начинается в начале координат, означает, что неподвижных молекул в газе нет. Из того, что кривая асимптотически приближается к оси абсцисс при бесконечно больших скоростях, следует, что молекул с очень большими скоростями мало. Это легко объяснимо. Для того чтобы молекула могла приобрести при столкновениях очень большую скорость, ей необходимо получить подряд много таких столкновений, при которых она получает энергию, и ни одного столкновения, при котором она ее теряет. А такая ситуация маловероятна.

 

РАСПРЕДЕЛЕНИЕ БОЛЬЦМАНА

В присутствии гравитационного поля (или, в общем случае, любого потенциального поля) на молекулы газа действует сила тяжести. В результате, концентрация молекул газа оказывается зависящей от высоты в соответствии с законом распределения Больцмана:

n = n 0exp(- mgh / kT)

где n - концентрация молекул на высоте h, n 0 - концентрация молекул на начальном уровне h = 0, m - масса частиц, g - ускорение свободного падения, k - постоянная Больцмана, T - температура.

Мы можем видеть, что концентрация молекул у дна сосуда оказывается выше, чем концентрация в верхней части сосуда. Под действием теплового движения молекулы подбрасываются вверх, а затем падают вниз за счет действия сил тяжести.

 

12) Энтропия — функция состояния системы, равная в равновесном процессе количеству теплоты, сообщённой системе или отведённой от системы, отнесённому к термодинамической температуре системы. единственная функция в физике, которая показывает направленность процессов.

Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно.

,

где dS — приращение энтропии; δ Q — минимальная теплота, подведенная к системе; T — абсолютная температура процесса;

Мерой неупорядоченности, неопределенности и хаоса служит энтропия. Энтропия характеризует вероятность, с которой устанавливается то или иное состояние, и является мерой хаотичности или необратимости. Это мера беспорядка в системах атомов, электронов, фотонов и других частиц. Чем больше порядка, тем меньше энтропия. Деградация качества энергии означает увеличение беспорядка в расположении атомов и в характере электромагнитного поля внутри системы. То есть все процессы, “пущенные на самотек”, всегда протекают так, что их беспорядок увеличивается.

 

Увеличение беспорядка, или энтропии, с течением времени – это одно из определений так называемой стрелы времени, т. е. возможности отличить прошлое от будущего, определить направление времени. Можно говорить по крайней мере о трех различных стрелах времени. Во-первых, стрела термодинамическая, указывающая направление времени, в котором возрастает беспорядок, или энтропия. Во-вторых, стрела психологическая. Это направление, в котором мы ощущаем ход времени, направление, при котором мы помним прошлое, но не будущее. И в-третьих, стрела космологическая. Это направление времени, в котором Вселенная расширяется, а не сжимается.

 

13) В 1878 году Л. Больцман дал вероятностную трактовку понятия энтропии. Он предложил рассматривать энтропию как меру статистического беспорядка в замкнутой термодинамической системе. Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния.

Всякое состояние макроскопической системы, содержащей большое число частиц, может быть реализовано многими способами. Термодинамическая вероятность W состояния системы – это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние. По определению термодинамическая вероятность W >> 1.

Согласно Больцману, энтропия S системы и термодинамическая вероятность W связаны между собой следующим образом:

S = k ln W,

 

где k = 1,38·10–23 Дж/К – постоянная Больцмана. Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы.

Вероятностная трактовка второго закона термодинамики допускает самопроизвольное отклонение системы от состояния термодинамического равновесия. Такие отклонения называются флуктуациями. В системах, содержащих большое число частиц, значительные отклонения от состояния равновесия имеют чрезвычайно малую вероятность.

14) Исторически первым был сформулирован принцип дальнодействия. Как было отмечено ранее, его автором стал И. Ньютон, который с помощью данного принципа пытался объяснить механизм действия гравитационных сил. Согласно принципу дальнодействия взаимодействие между телами происходит мгновенно на любом расстоянии, без каких-либо материальных носителей и посредников (агентов взаимодействия). В XIX в. был сформулирован принцип близкодействия, который в настоящее время существует в двух вариантах. Первый вариант был предложен М. Фарадеем, который считал, что взаимодействие между телами переносится полем от точки к точке с конечной скоростью. В XX в. принцип близкодействия был уточнен, в его современном варианте утверждается, что каждое фундаментальное физическое взаимодействие переносится соответствующим полем от точки к точке со скоростью, не превышающей скорость света в вакууме.

 

15) В основе специальной теории относительности лежат два принципа или постулата, сформулированные Эйнштейном в 1905 г.

  1. Принцип относительности:

Все физические процессы при одних и тех же условиях в ИСО протекают одинаково.

  1. Принцип постоянства скорости света:

Скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

 

В классической механике И. Ньютона утверждается представление о бесконеч. пространстве, в кот. находятся космич. объекты,связ. между собой силой тяготения. Раскрывая сущность времени и прос-ва, Ньютон хар-ет их как "вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве — в смысле порядка положения". Он предлагает различать 2 типа понятий пространства и времени.- абсолютное; - относительное. Абсолютное, истинное, матем. время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе наз. длительностью. Относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами, внешняя мера продолжительности, употребл. в обыденной жизни вместо истинного матем. времени, как-то: час, день, месяц, год. Абсолют. пространство по своей сущности, безотносительно к чему внешнему, остается всегда одинаковым и неподвижным. Относит. прос-во есть мера или какая-либо ограниченная подвижная часть, кот. опред-ся нашими чувствами по положению его относительно некот. тел и кот. в обыденной жизни принимается за пространство неподвижное.

 

Согласно принципу относительности в любой инерциальной системе отсчета время течет совершенно так же, как и в каждой совокупности инерциальных систем отсчета. Однако единого для всех инерциальных систем отсчета абсолютного времени не существует.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: