Устранение гетероскедастичности. Метод взвешенных наименьших квадратов.




Одной из ключевых предпосылок МНК является условие постоянства дисперсий случайных отклонений для любых наблюдений. Выполнимость данной предпосылки называется гомоскедастичностью; невыполнимость данной предпосылки называется гетероскедастичностью.

В качестве примера реальной гетероскедастичности можно сказать, что люди с большим доходом не только тратят в среднем больше, чем люди с меньшим доходом, но и разброс в их потреблении также больше, поскольку они имеют больше простора для распределения дохода.

При гетероскедастичности последствия применения МНК будут следующими:

1. Оценки параметров останутся по-прежнему несмещенными и линейными.

2. Оценки не будут эффективными, т.е. не будут иметь наименьшую дисперсию по сравнению с другими оценками данного параметра. Они не будут даже асимптотически эффективными. Увеличение дисперсии оценок снижает вероятность получения максимально точных оценок.

3. Дисперсии оценок параметров будут рассчитываться со смещением.

4. Все выводы, получаемые на основе соответствующих t – и F – статистик, а также интервальные оценки будут ненадежными. Вполне вероятно, что стандартные ошибки коэффициентов будут занижены, а t – статистики завышены. Это может привести к признанию статистически значимыми коэффициентов, которые таковыми на самом деле не являются.

При установлении гетероскедастичности возникает необходимость преобразования модели с целью устранения данного недостатка. Вид преобразования зависит от того, известны или нет дисперсии отклонений .

В случае, если дисперсии отклонений известны для каждого наблюдения, применяется метод взвешенных наименьших квадратов (ВНК). Гетероскедастичность устраняется, если разделить каждое наблюдаемое значение на соответствующее ему значение дисперсии.

Рассмотрим для простоты ВНК на примере парной регрессии:

(57)

Разделим обе части (57) на известное :

(58)

Сделаем замены переменных:

(59)

получим уравнение регрессии без свободного члена, но с двумя факторами и с преобразованным отклонением:

(60)

Можно показать, что для vi выполняется условие гомоскедастичности. Поэтому для модели (60) выполняются все предпосылки МНК, и оценки, полученные по МНК, будут наилучшими линейными несмещенными оценками.

Таким образом, наблюдения с наименьшими дисперсиями получают наибольшие «веса», а наблюдения с наибольшими дисперсиями – наименьшие «веса». Поэтому наблюдения с меньшими дисперсиями отклонений будут более значимыми при оценке параметров регрессии, чем наблюдения с большими дисперсиями. При этом повышается вероятность получения более точных оценок.

Полученные по МНК оценки параметров модели (60) можно использовать в первоначальной модели (57).

Для применения ВНК необходимо знать фактические значения дисперсий отклонений . На практике такие значения известны крайне редко. Поэтому, чтобы применить ВНК, необходимо сделать реалистические предположения о значениях . Чаще всего предполагается, что дисперсии отклонений пропорциональны или значениям xi, или значениям .

Если предположить, что дисперсии пропорциональны значениям фактора x, т.е.

(61)

тогда уравнение (57) преобразуется делением его левой и правой частей на :

или

(62)

Здесь для случайных отклонений выполняется условие гомоскедастичности. Следовательно, для регрессии (62) применим обычный МНК. Следует отметить, что регрессия (62) не имеет свободного члена, но зависит от двух факторов. Оценив для (62) по МНК коэффициенты а и b, возвращаемся к исходному уравнению регрессии.

Если в уравнении регрессии присутствует несколько объясняющих переменных, вместо конкретной переменной xj используется исходное уравнение множественной регрессии

т.е. фактически линейная комбинация факторов. В этом случае получают следующую регрессию:

(63)

Если предположить, что дисперсии пропорциональны , то соответствующим преобразованием будет деление уравнения регрессии (57) на xi:

или, если переобозначить остатки как :

(64)

Здесь для отклонений vi также выполняется условие гомоскедастичности. Применяя обычный МНК к регрессии (64) в преобразованных переменных

,

получим оценки параметров, после чего возвращаемся к исходному уравнению (57). Отметим, что в регрессии (64) по сравнению с исходным уравнением параметры поменялись ролями: свободный член а стал коэффициентом, а коэффициент b – свободным членом.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: