Асептика, антисептика, дезинфекция.




Противомикробным действием обладают:

1) галогены и их соединения (йод, йодо­форм, хлорамин Б, пантоцид),

2) окислители (Н2О2,, KMnO4),

3) кислоты, щелочи их соли (бензойная, аммиак и его соли),

4) спирты (70–80% этанол),

5) альдеги­ды (формальдегид, уротропин,.уросал),

6) соли тяжелых Ме (Hg, Ag, Au, Cu, Pb, Zn),

7) фенол и его производные (резорцин, хлорофен),

8) производные нитрофурана (фурацилин, фурагин фуразолидон),

9) поверхностно-активные вещества (хлоргексидин, грамицидин),

10) длинноцепочечные жирные кислоты,

11) фитонциды, антибиотики, красители (метиленовый синий, бриллиан­товый зеленый).

По МЕХАНИЗМУ ДЕЙСТВИЯ разделя­ются на:

а) деполимеризующие пептидогликан клеточной стенки,

б) ↑ проницаемость # мембраны,

в) блокирующие БХ реакции,

г) денату­рирующие ферменты,

д) окисляющие метаболиты и ферменты мкÒ,

е) растворяющие липопротеиновые структуры,

ж) повреждающие генетический аппарат или блокирующие его функции.

АНТИМИКРОБНЫЕ МЕРОПРИЯТИЯ. В основе методов профилактики и борьбы лежат прямые, косвенные и комплексные методы уничтожения или подавления жизнедеятельности условно-пато­генных микроорганизмов.

Прямые методы называются МИКРОБНОЙ ДЕКОНТАМИНАЦИЕЙ – полное или частичное удале­ние мкÒ с объектов внеш среды и биотопов чело­века с помощью факторов прямого повреждающего действия. Существует 2 различных типа деконтаминации: микробная деконтаминация ОБЪЕКТОВ ВНЕШ СРЕДЫ(стерилизация и дезинфекция) и ЖИВЫХ Ò (антисептика и химиотерапия).

Деконтаминация объектов внеш среды: Дезинфекция – совокупность хим, физ и механических способов ПОЛНОГО УНИЧТОЖЕНИЯ вегетативных и споровых форм определенных групп мкÒ. ЦЕЛЬ – предупреждение передачи возбу­дителей ч/з объекты внеш среды. Для этого чаще используют хим вещества с широким спектром микробоцидного дейст­вия (дезинфектанты), реже сочетают дезинфектант с t°С обработкой (пароформалиновая дезинфекция), с поверхностно-активными веществами.

Деконтаминация живых Ò: Антисептика – совокупность способов ПОДАВЛЕНИЯ РОСТА И РАЗМНОЖЕНИЯ мкÒ на интактных или поврежденных поверхностях кожи и сли­зистых оболочках тела. Основной метод – обработка биотопов хим веществами преимущественно с микробостатическим действием (антисептиками) с учетом спектра их активности и чувствительности возбудителей. ЦЕЛЬ – подавление патогенных и условно-патогенных мкÒ при сохранения аутохтонных видов. Исключение составляет антисепти­ческая ОБРАБОТКА РУК хирурга и операционного поля пациента, ран и слизистых оболочек иммунодефицитных лиц (необходимо полное освобождение от всех мкÒ).

Асептика – использует прямые (стерилизацию, дезинфекцию, антисептику) и косвенные (разделительные меры) методы воз­действия на мкÒ. ЦЕЛЬ – создание безмикробной (гнотобиотической) зоны или зоны с резко снижен­ной численностью мкÒ в местах нахождения больных (инфекционные боксы, при трансплантации органов, кювет для недоношенного ребенка и др.) или проведения медицинских вмешательств (опе­рационная, родильный зал) и лабораторных исследований.

Стерилизация полное уничтожение всех микроорганизмов. Стери­лизуют посуду, инструменты, питательные среды, лекарственные препа­раты, перевязочные средства, медицинское белье, эндоскопические аппа­раты и другие объекты. Для их стерилизации применяются в основном физические и механические методы.

Стерилизация в пламени проводится для обеззараживания бактери­альных петель, игл, предметных и покровных стекол, пинцетов.

Стерилизация горячим воздухом проводится в электрических сухожаровых шкафах, имеющих различную форму и размеры, снабженных хорошей тепловой изоляцией. Необходимая температура ав­томатически поддерживается терморегулятором. Cтери­лизуют лабораторную посуду и шприцы при температуре 180°С в течение 1 ч. Чашки Петри, пастеровские и градуированные пипетки помещают в специальные металлические пеналы или заворачивают в бумагу по несколько штук. Пробирки и колбы закрывают ватными пробками.

Стерилизация паром проводится двумя способами: насыщенным паром под давлением и текучим паром.

Свертывание (уплотнение) сыворотки и яичных сред производят в двустенном свертывателе с электрическим нагревом. Аппарат покрыт теплоизоляционным материалом и имеет стеклянную и металли­ческую крышки. Воду в свертыватель наливают через имеющееся в его верхней части отверстие, которое закрывается пробкой с вмонтированным термометром. Пробир­ки со средами укладывают на дно свертывателя в наклонном поло­жении. Прогревают среды одно­кратно или дробно при темпера­туре 80–90°С в течение 1 ч.

Фильтрование как механи­ческий способ стерилизации мо­жет быть использовано для обес­пложивания жидких веществ, которые нежелательно подвер­гать действию высокой темпера­туры, например сывороток, ан­тибиотиков. Для этого изготов­ляют мелкопористые фильтры с точно градуированными порами, которые задерживают микроор­ганизмы.

В быту используется стерилизация кипячением для об­работки игл и шприцев. Кипятят их в стерилизаторах 30–45 мин. Для повышения точки кипения и устранения жесткости воды добавляют 1 % соды. Этот метод не обеспечивает полного уничтожения микробов, так как споры бактерий и некоторые вирусы выдерживают кипячение в те­чение нескольких часов.

№36 Антибиотики. Биохимические и генетические механизмы лекарственной устойчивости микроорганизмов. Методы определения антибиотикочувствительности бактерий.

Эре антибиотикотерапии предшествовал период разработки антимикробных химиопрепаратов. Некоторые вехи: в 1891г. Д.А.Романовский сформулировал основные принципы химиотерапии инфекционных болезней, предложил хинин для лечения малярии, П.Эрлих в 1906г. предложил принцип химической вариации. Синтезированы производные мышьяка сальварсан и неосальварсан, предложен химиотерапевтический индекс. Круг химиопрепаратов постепенно расширялся. В 1932г. открыты подходы к созданию сульфаниламидных препаратов. Однако поистинне революционное значение имело открытие антибиотиков.

Одним из универсальных механизмов антогонизма микроорганизмов является синтез антибиотиков, которые тормозят рост и размножение микроорганизмов (бактериостатическое действие) или убивают их (бактерицидное действие). Антибиотики- вещества, которые могут быть получены из микроорганизмов, растений, животных тканей и синтетическим путем, обладающие выраженной биологической активностью в отношении микроорганизмов.

Таких веществ известно несколько тысяч, однако реально используют значительно меньше. Существует ряд требований к антибиотикам, существенно ограничивающих их терапевтическое применение:

- эффективность в низких концентрациях;

- стабильность в организме и в различных условиях хранения;

- низкая токсичность или ее отсутствие;

- выраженный бактериостатический и (или) бактерицидный эффект;

- отсутствие выраженных побочных эффектов;

- отсутствие иммунодепрессивного воздействия.

Первыми открытыми антибиотиками были пенициллин (Флеминг) и стрептомицин (Ваксман).

Антибиотики могут быть разделены по происхождению, направленности и спектру действия, по механизму действия.

По происхождению антибиотики могут быть:

- бактериального (полимиксин, грамицидин);

- актиномицетного (стрептомицин, левомицетин, эритромицин);

- грибкового (пенициллин);

- растительного (рафанин, фитонциды);

- животного происхождения (интерфероны, лизоцим).

Больше всего известно антибиотиков актиномицетного происхождения. Актиномицеты- преимущественно почвенные микроорганизмы. В условиях большого количества и разнообразия почвенных микроорганизмов их антогонизм, в том числе с помощью выработки антибиотиков- один из механизмов их выживания.

По спектру действия антибиотики разделяют на:

- действующие преимущественно на грамположительную микрофлору- пенициллин, эритромицин;

- действующие преимущественно на грамотрицательную микрофлору- полимиксин;

- широкого спектра действия (на грам-плюс и грам-минус флору)- стрептомицин, неомицин;

 

- противогрибковые- нистатин, амфотеррицин, леварин, низорал;

- противотуберкулезные- стрептомицин, канамицин;

- противоопухолевые- рифампицин;

- противовирусные- интерферон, зовиракс, ацикловир.

Антибиотики разделяют по механизму действия:

- ингибиторы синтеза пептикогликана клеточной стенки (пенициллин, цефалоспорин, ванкомицин, ристомицин). Действуют на имеющих клеточную стенку растущие бактерии, не действуют на L- формы, покоящиеся формы бактерий;

- ингибиторы синтеза белка (стрептомицин, левомицетин, тетрациклин);

- ингибиторы синтеза нуклеиновых кислот, пуринов и аминокислот (налидиксовая кислота, рифампицин);

- ингибиторы синтеза мембраны и цитоплазматической мембраны грибов (нистатин, полимиксин).

Побочное действие антибиотиков.

Для макроорганизма:

- токсическое действие;

- дисбактериозы;

- аллергические реакции;

- иммунодепрессивное действие;

- эндотоксический шок.

Для микроорганизмов:

- формирование атипичных форм микробов;

- формирование антибиотикорезистентных и антибиотикозависимых форм микроорганизмов.

Биохимические и генетические механизмы лекарственной устойчивости микроорганизмов.

Существует два типа лекарственной устойчивости- естественная (природная) и приобретенная (в результате мутаций, обмена R- плазмидами др.).

Естественная лекарственная устойчивость является видовым признаком, чаще связана с недоступностью антибиотика к его мишени, т.е. невозможностью осуществления его механизма действия. В природных условиях, особенно в почве, микроорганизмы находятся в конкурентной борьбе за субстраты. Антибиотики- один из селективных факторов отбора. Микроорганизмы- продуценты антибиотиков защищены от синтезируемых антибиотиков генетическими механизмами (генетически детерминированная устойчивость, кодируемая в хромосоме или обусловленная наличием R- плазмид). Микроорганизмы в условиях совместного обитания вынуждены вырабатывать устойчивость к антибиотикам.

Резистентность к антибиотикам у микробов может быть связана с негенетическими факторами (низкая метаболическая активность, переход в L- форму).

Основную роль в лекарственной устойчивости принадлежит R- плазмидам, способным передаваться в другие бактерии и формировать своеобразный генофонд лекарственной устойчивости микроорганизмов. Резистентность современных стафилококков к пенициллину доходит до 100%.

На биохимическом уровне в формировании резистентности могут участвовать различные механизмы.

1.Разрушение молекулы антибиотика (пенициллины и другие бета- лактамные антибиотики разрушаются ферментом бета- лактамазой).

2.Модификация структуры молекулы антибиотика, приводящая к утрате биологической активности (так действуют изоферменты).

3.Изменение структуры мишеней, чувствительных к антибиотику (белков 70S рибомос- устойчивость к тетрациклинам, стрептомицину, макролидам, гираз- к хинолонам, рнк- полимераз- к рифампицину, пенициллинсвязывающих белков- транспептидаз- к бета- лактамам).

4.Образование бактериями “обходного” пути метаболизма.

5.Формирование механизмов активного выведения антибиотика из клетки.

Из-за формирования антибиотикоустойчивых популяций микроорганизмов с целью эффективного лечения необходимо предварительно определять чувствительность данного антибиотика к выделенной культуре возбудителя.

Основными методами определения антибиотикочувствительности бактерий in vitro является метод серийных разведений, диффузии в агар (бумажных дисков), определение способности к продукции бета- лактамазы, in vivo- на модели безмикробных животных, определение концентрации антибиотиков в крови и моче.

Метод диффузии в агар с применением стандартных дисков, пропитанных различными антибиотиками в определенных концентрациях (зависят от терапевтической дозы и соотвествуют рекомендациям ВОЗ). Основан на использовании стандартных питательных сред, дисков и методов. Оценка результатов связана с существованием зависимости между размером зоны подавления роста исследуемых культур вокруг дисков и значениями минимальных подавляющих концентраций (МПК) соответствующих антибиотиков (чувствительностью микроорганизмов). Имеются специальные таблицы для оценки результатов, в соответствии с которыми культуры определяют как чувствительные, умеренно устойчивые и устойчивые (резистентные) к тестируемому антибиотику.

Метод серийных разведений антибиотиков позволяет более точно определить МПК, однако из-за громоздкости применяется реже.

Бета- лактамазный тест (определение способности к образованию бета- лактамаз) чаще определяют методом дисков с нитроцефином - цефалоспорином, изменяющим окраску дисков при гидролизе. Положительный тест свидетельствует о резистентности бактерий ко всем бета- лактамаза- чувствительным пенициллинам.

Существует ряд причин, обусловливающих различную чувствительность микроорганизмов к антибиотикам in vitro и in vivo.

На антимикробную активность in vitro влияют многие факторы, в том числе:

- рН среды;

- компоненты среды;

- концентрация микроорганизмов;

- условия и время культивирования.

На антимикробную активность препаратов in vivo также влияют различные факторы, из которых необходимо отметить:

- фармакодинамику препарата в организме (скорость всасывания, выведения, расщепления и т.д.);

- локализацию микробов в организме (особенно внутриклеточную локализацию).

 

 

№37 Экология микроорганизмов. Роль микроорганизмов в круговороте веществ в природе, микрофлора основных сред обитания.

Микроорганизмы распространены повсюду. Они заселяют почву, воду, воздух, растения, организмы животных и людей- экологические среды обитания микробов.

Выделяют свободноживущие и паразитические микроорганизмы. Всюду, где есть хоть какие- то источники энергии, углерода, азота, кислорода и водорода (кирпичиков всего живого), обязательно встречаются микроорганизмы, различающиеся по своим физиологическим потребностям и занимающих свои экологические ниши. Титаническая роль микроорганизмов в круговороте веществ в природе имеет исключительное значение для поддержания динамического равновесия биосферы.

Микроорганизмы в экологических нишах сосуществуют в виде сложных ассоциаций- биоценозов с различными типами взаимоотношений, в конечном счете обеспечивающих сосуществование многочисленных видов прокариот и различных царств жизни.

Все типы взаимоотношений микроорганизмов объединяются понятием симбиоз. Он может быть антогонистическим и синэргическим.

Роль микроорганизмов в круговороте веществ в природе.

Под круговоротом веществ в природе понимают циклы превращения химических элементов, из которых построены живые существа, происходящие вследствие разнообразия и гибкости метаболизма микроорганизмов.

Наибольшее значение для всего живого имеет обмен (кругооборот) углерода, кислорода, водорода, азота, серы, фосфора и железа. Этапы кругооборота различных химических элементов осуществляется микроорганизмами разных групп. Непрерывное существование каждой группы зависит от химических превращений элементов, осуществляемых другими группами микроорганизмов. Жизнь на Земле непрерывна, поскольку все основные элементы жизни подвергаются циклическим превращениям, в значительной степени определяемых микроорганизмами.

 

Микрофлора почвы.

Почва является основным местом обитания микробов. Состав микрофлоры складывается из многих тысяч видов бактерий, грибов, простейших и вирусов. Количество микробов зависит от состава почв и ряда других факторов, в одном грамме пахотной почвы может содержаться до 10 млрд. микроорганизмов. Среди них сапрофиты (“гнилое растение”), т.е. микроорганизмы, живущие за счет мертных органических субстратов. В процессе самоочищения почвы и кругооборота веществ принимают участие также нитрифицирующие, азотфиксирующие, денитрифицирующие и другие группы микроорганизмов.

Патогенные микроорганизмы попадают в почву с биовыделениями людей и животных (калом, мочой, мокротой, слюной, гноем, потом и др.), а также с трупами. Дольше всего в почве сохраняются спорообразующие патогенные микроорганизмы- возбудители сибирской язвы, столбняка, газовой гангрены, ботулизма, что определяет эпидемическое значение почвы при этих инфекциях. Возбудители сапронозов могут автономно обитать в почве и воде и быть связанными с почвенными и водными организмами, т.е. эта природная среда обитания для них- основной резервуар возбудителей. Почва и вода в случае сапронозов выступает в качестве источника заражения животных и людей.

Микрофлора воды.

Вода- древнейшее место обитания микроорганизмов. Пресноводные водоемы и реки отличаются богатой микрофлорой. Многие виды галофильных микробов обитает в морской воде, в том числе на глубинах в несколько тысяч метров. Численность микроорганизмов в воде в определенной степени связано с содержанием органических веществ. Серьезной экологической проблемой являются сточные воды, содержащие значительное количество микроорганизмов и органических веществ, не успевающих самоочищаться.

Санитарно- гигиеническое качество воды оценивается различными способами. Чаще определяют коли- титр и коли- индекс, а также общее количество микроорганизмов в мл. Коли- индекс- количество E.coli (кишечной палочки) в одном литре, коли- титр- наименьшее количество воды, в котором обнаруживается одна клетка кишечной палочки. Санитарно- эпидемиологическое значение определения в различных объектах микроорганизмов изучает санитарная микробиология. К числу ее основных принципов можно отнести индикацию (выявление) патогенов в объектах окружающей среды, к косвенным методам- выявление санитарно- показательных микроорганизмов, определение общей микробной обсемененности.

Вода имеет существенное значение в эпидемиологии кишечных инфекций. Их возбудители могут попадать с испражнениями во внешнюю среду (почву), со сточными водами- в водоемы и в некоторых случаях- в водопроводную сеть.

Микрофлора воздуха.

Воздух как среда обитания менее благоприятен, чем почва и вода- мало питательных веществ, солнечные лучи, высушивание. Главным источником загрязнения воздуха микроорганизмами является почва, меньше- вода. В видовом отношении преобладают кокки (в т.ч. сарцины), споровые бактерии, грибы, актиномицеты. Особое значение имеет микрофлора закрытых помещений (накапливается при выделении через дыхательные пути человека). Воздушно- капельным путем (за счет образования стойких аэрозолей) распространяются многие респираторные инфекции (грипп, коклюш, дифтерия, корь, туберкулез и др.).

Микробиологическая чистота воздуха имеет большое значение в больничных условиях (особо- операционные и другие хирургические отделения).

 

 

№38 Микрофлора человека и ее значение.

Ребенок развивается в организме матери в норме в стерильных условиях. Формирование новой экологической системы “организм человека + населяющая его микрофлора” начинается в момент рождения, причем основой ее является микрофлора матери и окружающей ребенка внешней среды (прежде всего воздуха). В течение короткого времени кожные покровы и слизистые оболочки, сообщающиеся со внешней средой, заселяются разнообразными микроорганизмами. В формировании микрофлоры детей первого года (главным образом- бифидобактерии и лактобактерии) существенную роль имеет естественное (грудное) вскармливание.

Нормальная (т.е. в условиях здорового организма) микрофлора в количественном и качественном отношении представлена на различных участках тела (экотопах) неодинаково. Причины- неодинаковые условия обитания.

Аутохтонная (т.е. присущая данной области) микрофлора может быть разделена на резидентную ( постоянную) и транзиторную (непостоянную). На слизистых оболочках, особенно желудочно- кишечного тракта, представители нормальной микрофлоры обитают в виде двух форм- часть из них располагается в просвете (просветная), другая заключена в мукозный пристеночный матрикс, образующий биопленку (пристеночная микрофлора).С ней связана колонизационная резистентность кишечника- естественный барьер защиты кишечника (и организма в целом) от инфекционных агентов.

Нормальная микрофлора кожи.

Наиболее заселены микроорганизмами места, защищенные от действия света и высыхания. Наиболее постоянен состав микрофлоры в области устьев сально- волосяных фолликулов. Чаще выявляют Staphylococcus epidermidis и S.saprophyticus, грибы рода Candida, реже- дифтероиды и микрококки.

Микрофлора дыхательных путей.

Слизистые оболочки гортани, трахеи, бронхов и альвеолы здорового человека не содержат микроорганизмов. Основная масса микрофлоры рото- и носоглотки приходится на зеленящего стрептококка, реже выявляются нейссерии, дифтероиды и стафилококки.

Микрофлора мочеполового тракта.

Микробный биоценоз скуден, верхние отделы обычно стерильны. Во влагалище здоровой женщины преобладают молочнокислые палочки Додерлейна (лактобактерии), создающие кислую рН, угнетающую рост грамотрицательных бактерий и стафилококков, и дифтероиды. Существует баланс между лактобактериями с одной стороны и гарднереллами и анаэробами с другой.

Микрофлора желудочно- кишечного тракта.

Наиболее активно бактерии обживают желудочно- кишечный тракт. При этом колонизация осуществляется четко “по этажам”. В желудке с кислой реакцией среды и верхних отделов тонкой кишки количество микроорганизмов не превышает 1000 в мл, чаще обнаруживают лактобациллы, энтерококки, дрожжи, бифидобактерии, E.coli.

Микрофлора толстого кишечника наиболее стабильна и многообразна. Это поистинне резервуар бактерий всего организма- обнаружено более 250 видов, общая биомасса микробов может достигать 1,5 кг. Доминирующей группой в норме являются бесспоровые анаэробные бактерии (бифидобактерии и бактероиды)- до 99%. Выделяют мукозную (пристеночную) и просветную микрофлору. Пристеночная микрофлора обеспечивает колонизационную резистентность кишечника, играющую важную роль в предупреждении (в норме) и в развитии (при патологии) экзо- и эндогенных инфекционных заболеваний.

Нормальная микрофлора и особенно микрофлора толстого кишечника оказывает существенное влияние на организм. Основные ее функции:

- защитная (антагонизм к другим, в том числе патогенным микробам);

- иммуностимулирующая (антигены микроорганизмов стимулируют развитие лимфоидной ткани);

- пищеварительная (прежде всего обмен холестерина и желчных кислот);

- метаболическая (синтез витаминов группы В- В1,2,6,12, К, никотиновой, пантотеновой, фолиевой кислот).

Существуют различные методы изучения роли нормальной микрофлоры. Гнотобионты (безмикробные животные) используются для изучения роли микроорганизмов для функционирования физиологических систем. Гнотобиологические технологии используют для лечения иммунодефицитов, ожогов.

В результате разнообразных воздействий, снижающих естественную резистентность, при тяжелых инфекционных и соматических заболеваниях и особенно при нерациональном применении антибиотиков возникают дисбактериозы. Дисбактериоз- изменения количественного и качественного состава микрофлоры, главным образом кишечника. Чаще сопровождаются увеличением факультативно- анаэробной или остаточной микрофлоры (грамотрицательных палочек - кишечной палочки, протея, псевдомонад), стафилококков, грибов рода Candida. Эти микроорганизмы как правило устойчивы к антибиотикам и при подавлении нормофлоры антибиотиками и снижении естественной резистентности получают возможность беспрепятственно размножаться.

Наиболее тяжелые формы дисбактериозов- стафилококковые пневмонии, колиты и сепсис, кандидомикозы, псевдомембранозный колит, вызываемый Clostridium difficile.

Для лечения используют биопрепараты, восстанавливающие нормальную микрофлору- эубиотики- колибактерин (используют специальный штамм E.coli, антогонист шигелл), лактобактерин, бифидумбактерин, бификол, бактисубтил и другие, а также специальные бактериофаги.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: