Температура вспышки, воспламенения и самовоспламенения




Температурой вспышки называется минимальная температура, при которой пары нефтепродукта образуют с воздухом смесь, способную к кратковременному образованию пламени при внесении в нее внешнего источника воспламенения (пламени, электрической искры и т. п.) и определяется па ГОСТ 12.1.044—84.
Вспышка представляет собой слабый взрыв, который возможен в строго определенных концентрационных пределах в смеси углеводородов с воздухом. Различают верхний и нижний концентрационный предел распространения пламени. Верхний предел характеризуется максимальной концентрацией паров органического вещества в смеси с воздухом, выше которой воспламенение и горение при внесении внешнего источника воспламенения невозможно изза недостатка кислорода. Нижний предел находится при минимальной концентрации органического вещества в воздухе, ниже которой количество теплоты, выделившееся в месте локального воспламенения, недостаточно для протекания реакции во всем объеме.
Температурой воспламенения называется минимальная температура, при которой пары испытуемого продукта при внесении внешнего источника воспламенения образуют устойчивое незатухающее пламя. Температура воспламенения всегда выше температуры вспышки, часто довольно значительно— на несколько десятков градусов.
Температурой самовоспламенения называется минимальная температура, при которой пары нефтепродуктов в смеси с воздухом воспламеняются без внешнего источника воспламенения. На этом свойстве нефтепродуктов основана работа дизельных двигателей внутреннего сгорания. Температура самовоспламенения выше температуры вспышки на несколько сотен градусов.
Температура вспышки керосинов, дизельных топлив, смазочных масел, мазутов и других тяжелых нефтепродуктов характеризует нижний предел взрываемости. Температура вспышки бензинов, давление паров которых при комнатных температурах значительно, обычно характеризует верхний предел взрываемости. В первом случае определение ведется при нагревании, во втором — при охлаждении.
Как всякая условная характеристика, температура вспышки зависит от конструкции прибора и условий определения. Кроме того, на ее значение влияют внешние условия — атмосферное давление и влажность воздуха. Температура вспышки возрастает с увеличением атмосферного давления.
Температура вспышки связана с температурой кипения исследуемого вещества.
Температура вспышки — величина неаддитивная. Опытное ее значение всегда ниже рассчитанного по правилам аддитивности среднеарифметического значения температур вспышек компонентов, входящих в состав смеси. Это объясняется тем, что температура вспышки зависит главным образом от давления пара низкокипящего компонента, а высококипящий компонент служит передатчиком теплоты. В качестве примера можно указать, что попадание даже 1 % бензина в смазочное масло снижает температуру вспышки от 200 до 170°С, а 6 % бензина снижают ее почти вдвое.
Существуют два метода определения температуры вспышки — в приборах закрытого и открытого типа. Значения температуры вспышки одного и того же нефтепродукта, определенные в приборах различного типа, заметно различаются. Для высоковязких продуктов это различие достигает 50, для менее вязких 3—8°С.
В зависимости от состава топлива значительно изменяются условия его самовоспламенения. С этими условиями, в свою очередь, связаны моторные свойства топлив, в частности детонационная стойкост

 

 

20 Температуры застывания, помутнения и начала кристаллизации.

Нефть и нефтепродукты не являются индивидуальными веществами, а представляют собой сложную смесь органических соединений. Поэтому они не имеют определенной температуры перехода из одного агрегатного состояния в другое. Влияние температуры на агрегатное состояние нефти и нефтепродуктов имеет важное значение при их транспортировке и эксплуатации.

Низкотемпературные свойства нефти, дизельных и котельных топлив, а также нефтяных масел характеризуются температурой застывания. Карбюраторные, реактивные и дизельные топлива характеризуются температурой помутнения. Карбюраторные и реактивные топлива, содержащие ароматические углеводороды, характеризуются температурой начала кристаллизации. Указанные характеристики не являются физическими константами, однако достаточно четко определяют температурный диапазон практического применения соответствующих нефтепродуктов.

Температура застывания характеризует возможную потерю текучести нефтепродукта в зоне низких температур. Чем больше содержание парафинов (твердых углеводородов), тем выше температура застывания нефтепродукта. Следует отметить, что потеря текучести может быть связана и с увеличением вязкости продукта с понижением температуры. Например, кинематическая вязкость остаточного авиамасла при 500 С равна 2 ст, при 00 С – 130 ст, а при –250С она повышается до 3500 ст. При такой высокой степени вязкости масло теряет подвижность и его невозможно прокачивать.

Температура помутнения указывает на склонность топлива поглощать при низких температурах влагу из воздуха (это особенно опасно для авиационных топлив, поскольку образующиеся кристаллики льда могут засорять топливоподающую аппаратуру, что может привести к трагедии).

Температура начала кристаллизации карбюраторных и реактивных топлив не должна превышать –600С. По этой причине в зимних сортах бензина нежелательно наличие высокого содержания ароматических углеводородов. При повышенном содержании бензола и некоторых других ароматических углеводородов эти высокоплавкие соединения могут выпадать из топлива в виде кристаллов, что приводит к засорению топливных фильтров и остановке двигателя.

 

 

 

Вязкость (или внутреннее трение) нефти и нефтепродуктов зависит от химического и фракционного состава. Различают динамическую (ή) и кинематическую (n) вязкость (из физики n = ή /r).

Динамическая вязкость (ή) или внутреннее трение – это свойство реальных жидкостей оказывать сопротивление сдвигающим касательным усилиям. Это свойство проявляется при движении жидкостей. Единица измерения - н•с/м2.

Динамическую вязкость иногда характеризуют как сопротивление, которое оказывает жидкость при относительном перемещении двух слоев.

Кинематическая вязкость (n) – величина, равная отношению динамической вязкости (ή) к ее плотности (r ) при той же температуре, т.е. n = ή /r

Кинематическая вязкость нефтей различных месторождений изменяется в широких пределах (от 2 до 300 сст – сантистокс при 200С). Однако средняя вязкость большинства нефтей составляет величину от 40 до 60 сст.

Кинематическая вязкость является важнейшей характеристикой нефтяных смазочных масел, поскольку именно от величины вязкости зависит способность смазочного масла обеспечивать необходимый гидродинамический режим смазки. Неслучайно для смазочных масел, предназначенных для определенного вида машин и механизмов, величина вязкости ( g50 и g100) является главной нормирующей составляющей.

Определение кинематической вязкости проводят в стеклянных вискозиметрах, снабженных калиброванными капиллярами.

Для ряда нефтепродуктом нормированным параметром является так называемая условная вязкость, определяемая в металлических вискозиметрах.

Условной вязкостью называется отношение времени истечения из вискозиметра 200 мл нефтепродукта при температуре испытания ко времени истечения 200 мл дистиллированной воды при 200С. Условная вязкость – величина относительная, безразмерная и выражается в условных градусах (0ВУ).

Между величинами условной и кинематической вязкостью выведена эмпирическая зависимость:

для ή от 1 до 120 сст nt = (7.24 ВУt – 6.25/ВУ t) или nt = (7.31 ВУt – 6.31/ВУ t)

для ή > 120 сст nt= 7.4 ВУt.

Для нефтяных фракций по мере увеличения их молекулярного веса и температуры кипения вязкость значительно возрастает. Так, например, вязкость бензинов при 200С приблизительно равна 0.6 сст, а вязкость остаточных масел 300-400 сст.

Следует помнить, что вязкость масел не обладает свойством аддитивности. Поэтому вязкость смеси масел нельзя определить расчетным путем как средневзвешенную величину. Для определения вязкости смесей пользуются специальными номограммами. По этим номограммам (кривым) можно установить в каких соотношениях следует смешать компоненты для получения масел с заданной вязкостью.

Значение вязкости сильно зависит от температуры. При низких температурах вязкость нефтепродуктов значительно повышается и наоборот. Поскольку многие масла и другие нефтепродукты эксплуатируются в широком диапазоне температур, то характер температурной кривой вязкости служит для них важной качественной характеристикой. Чем эта кривая (зависимость) более пологая, тем выше качество масла.

Зависимость вязкости от температуры описывается эмпирической формулой Вальтера:

lg [lg(nt + 0.6)] = A – B lgT

где А и В - постоянные величины.

Для оценки вязкостно-температурных свойств нефтяных масел применяют следующие показатели:

1) отношение вязкости при 500С к вязкости при 1000С ( g50/g100);

2) температурный коэффициент вязкости (ТКВ). Его определяют в диапазоне от 0 до 1000 С и от 20 до 1000 С по формулам:

ТКВ0-100=(n0 - n100)/n50 и ТКВ20-100=1.25(n20 - n100)/ n50

3) индекс вязкости – условный показатель, представляющий собой сравнительную характеристику испытуемого и эталонного масла. Обычно рассчитывается по специальным таблицам на основании значения кинематической вязкости при 50 и 1000 С. В частности, его определяют как отношение значений кинематической вязкости нефтепродукта при 50 и 1000 С, соответственно:

I = n50/n100

Сюда же Вязкость нефти - это свойство оказывать при движении сопротивление перемещению частиц относительно друг друга. Различают динамическую, кинематическую и условную вязкость. Единица динамической вязкости в международной системе единиц СИ - Паскаль в секунду (Па●с). Это сопротивление, оказываемое жидкостью при перемещении со скоростью 1 м/с относительно друг друга двух её слоев площадью 1 м2 каждый, находящихся на расстоянии 1 м, под действием приложенной силы в 1 Н.

Величина, обратная динамической вязкости, называется текучестью.

Кинематическая вязкость представляет собой отношение динамической вязкости жидкости к её плотности при температуре определения. В системе СИ единица кинематической вязкости имеет размерность м2/с. Распространенными единицами кинематической вязкости (в системе СГС) являются Стокс (Ст) и сантистокс (сСт); 1 Ст= 1·10-4 м2/с.

На практике часто пользуются величиной так называемой условной вязкости, измеряемой в градусах (0ВУ), т.е. в безразмерных числах отношения времени истечения данной жидкости к истечению дистиллированной воды в одном и том же стандартном приборе при температуре 200С.

Кинематическая вязкость нефтей различных месторождений колеблется от 2 до 300 мм2/с (сСт) при 200С и для большинства нефтей обычно не превышает 40-60 мм2/с. Вязкость нефтей зависит от их углеводородного состава, температуры и давления.

Наибольшей вязкостью обладают нафтеновые углеводороды. При повышении температуры вязкость резко уменьшается, с повышением давления увеличивается.

Вязкость имеет большое значение, т.к. она определяет масштабы миграции при формировании залежей нефти, играет важную роль при добыче нефти (вязкую нефть труднее извлечь из недр), определяет расход энергии на перекачку нефти по трубопроводам. Определяют вязкость при помощи приборов, называемых вискозиметрами.

 

 

22 был указан в п.6

ТЕПЛОВЫЕ СВОЙСТВА НЕФТИ

В технологических процессах сбора и подготовки продукций скважин, материальные потоки часто нагревают и охлаждают. Для ведения этих процессов, расчетов и проектирования аппаратуры необходимо знать тепловые свойства нефтей, газа и воды. К ним относятся все известные тепловые физические величины:

 

·
теплоемкость

·
теплопроводность

·
энтальпия

·
теплота сгорания


В практике обычно используют понятие удельной теплоемкости, подразумевая под этим то количество теплоты (кДж), которое необходимо для нагрева 1 кг вещества на 1 0С. С повышением плотностей нефтей их теплоемкость снижается. С повышением температуры теплоемкость нефти увеличивается. Для метанового газа удельную теплоемкость можно рассчитать по формуле:


Сср(тепл) = q/(T2 – T1)


q – количество тепла, затрачиваемое на нагрев 1 кг вещества от температуры Т1 до Т2, (Дж);
Удельная теплоемкость нефти существенно зависит от химического строения и состава нефти. Обычно её определяют не экспериментальным путём, а по формулам, номограммам и графикам.

Теплопроводность – это процесс передачи теплоты по средствам теплового движения молекул или атомов, и характеризует распространение тепла в различных веществах.

Теплопроводность – это количества тепла, которое проходит в единицу времени через единицу поверхности при разности температур в 1 0С на единицу длины в направлении теплового потока.

Наибольшая теплопроводность у твердых нефтепродуктов, жидкие занимают промежуточное положение и наименьшее у газов и паров.

Для жидких нефтей и нефтепродуктов теплопроводность падает с повышением температуры, противоположность этому для углеводородных газов и нефтяных паров теплопроводность растёт с повышением температуры и снижается с увеличением их мольной массы.

Энтальпия.

Для жидких нефтей и нефтепродуктов под энтальпией понимают суммарное количество тепла, которое затрачивается на нагрев в единицу массы нефти и нефтепродуктов от 0 до заданной температуры. Значение энтальпии вычисляется по формулам, приводимым в справочниках в виде таблицы.

Количество тепла, выделяющееся при полном сгорании в единицу массы нефти или нефтяного топлива, называют теплотой сгорания. Это важнейшая величина, характеризующая потенциальный запас энергий в топливе. Различают высшую (Qв) и низшую (Qн) теплоту сгорания. Qвотличается от Qн на количество теплоты, которое выделяется при конденсации водяных паров, образовавшихся в процессе сгорания топлива. Обычно, в расчетах пользуются низшей теплотой сгорания, т.к. при сжигании топлива образовавшиеся водяные пары уносятся вместе с дымовыми газами. Теплоту сгорания нефти и жидких у/в определяют экспериментально (сжигают определенную навеску специальным прибором колориметром; на практике чаще всего теплоту сгорания рассчитывают по эмпирическим формулам).


Qв r= 12400 – 2100(1515)
Qнr= 10090 + 7551515 r– 2100 152
rГде 1515 и r152 – относительные плотности топлива, измеренные при 150С и 20С.

 

24 --------

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Коэффициент пропорциональности — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (м²). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

 

Электрические (диэлектрические) свойства нефти.

Безводная нефть и нефтепродукты являются диэлектриками (диэлектрическая проницаемость нефти ~2; для сравнения у стекла она ~7-8). У безводных чистых нефтепродуктов электропроводность совершенно ничтожна, что имеет важное практическое значение и применение. Так, твердые парафины применяются в электротехнической промышленности в качестве изоляторов, а специальные нефтяные масла (конденсаторное, трансформаторное) – для заливки трансформаторов, конденсаторов и другой аппаратуры, например, для наполнения кабелей высокого давления (изоляционное масло С-220).

Высокие диэлектрические свойства нефтепродуктов способствуют накоплению на их поверхности зарядов статического электричества. Их разряд может вызвать искру, а следовательно и загорание нефтепродукта. Надежным методом борьбы с накоплением статического электричества является заземление всех металлических частей аппаратуры, насосов, трубопроводов и т.п.

Оптические свойства нефти.

Оптическим характеристикам нефти относятся цвет, флуоресцентную и оптическую активность.

Углеводороды нефти бесцветны. Тот или иной цвет нефти придают содержащиеся в них смолы и асфальтены, а также некоторые сернистые соединения. Чем тяжелее нефть, тем больше содержится в ней смолисто-асфальтеновых веществ, и тем она темнее.

Флуоресценцией называется свечение в отраженном свете. Это явление характерно для сырой нефти и нефтепродуктов. Причины флуоресценции нефти точно не известны. Не исключено, что это связано с наличием в нефти полиядерных ароматических углеводородов или примесей. Не случайно, глубокая очистка нефти ликвидирует флуоресценцию.

Под оптической активностью нефтепродуктов, как и других органических соединений, понимают их способность вращать плоскость поляризации света. Большинство нефтей вращают плоскость поляризации вправо, т.е. содержат в своем составе правовращающие изомеры. Практического значения это свойство нефти не имеет.

Для количественной характеристики оптических свойств нефти и нефтепродуктов нередко используют показатель преломления ( n20D ), удельную рефракцию (r), рефрактометрическую разность (Ri), удельную дисперсию ( d).

Удельная рефракция ( r) определяется формулой Л.Лоренца и Г.Лоренца:

r = (n2D –1)/ (n2D +2)r

или формулой Гладсона-Дейля:

r = (nD –1)/r

(в обоих формулах значения показателя преломления и плотностиберутся для одной и той же температуре).

Рефрактометрическая разность (интерцепт рефракции) Ri также связан с плотностью и показателем преломления:

Ri =n20D - r204/2

Эта константа имеет постоянное значение для отдельных классов углеводородов, например, алканы – 1.0461; мноциклические углеводороды – 1.0400; полициклические – 1.0285; ароматические – 1.0627 и т.п.

Удельная дисперсия ( d) характеризует отношение разности показателей преломления для двух различных частей спектра к плотности:

d = (nF - nc) 104/r

где nF и nc - показатели преломления для голубой и красной линий водорода соответственно (l = 4861 ммк и 6563 ммк).

 

 

Мерой детонационной стойкости бензинов является октановое число. Октановым числом называется число, выражающее объемную долю изооктана в смеси с гептаном.

Для изооктана детонационная стойкость принята равной 100%, а для нормального гептана – 0%. Если, например, испытуемый бензин по своей детонационной стойкости оказался при испытаниях эквивалентным смеси из 80% изооктана и 20% нормального гептана, то октановое число считается равным 80.

Чем выше цифра по октановому числу, тем лучше бензин, так как бензин наиболее близок к чистому изооктану.

Методы определения октанового числа: моторный и исследовательский

Моторный метод применяется для бензинов, которые применяются для двигателей с малой степенью сжатия, то есть для менее ответственной техники.

Исследовательский метод применяется для бензинов, которые применяются для двигателей с высокой степенью сжатия (для двигателей, работающих в условиях города, в условиях частых остановок, частых торможений, неравномерных нагрузок).

Полученные разными методами ОЧ отличаются друг от друга. Разность между ними называют чувствительностью бензинов. Эта величина характеризует возможные отклонения детонационной стойкости в реальных условиях эксплуатации от стойкости, определяемой лабораторными методами. Чем выше чувствительность бензина, тем выше его детонационная стойкость (2÷12 единиц).

Цетановое число – это число, которое показывает объемную долю цетана в смеси с альфаметилнафталином, причем эта смесь сгорает с такой же жесткостью, что и исследуемое дизельное топливо. Цетан С16Н34 принят за идеальное топливо для дизельного двигателя. Цетановое число его равно 100, а у альфаметилнафталина Цетановое число равно 0, так как он тяжелый арен, не способный самовоспламеняться.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: