ПРИРОДА НОРМАЛЬНОЙ НАУКИ 9 глава




Чтобы больше узнать о том, какими могут быть эти различия в опыте, нужно вернуться к Аристотелю, Галилею и вопросу о маятнике. Какие данные делали взаимодействие их различных парадигм и их общей среды доступным каждому из них? Рассматривая сдерживаемое цепочкой падение, аристотелианцы должны были измерять (или по крайней мере обсуждать — аристотелианцы редко измеряли) вес камня, высоту его вертикального падения и время, требующееся ему, чтобы достичь состояния равновесия. Эти понятия вместе с представлением о сопротивлении среды были концептуальными категориями, рассмотренными аристотелевской наукой при анализе падающего тела14. Нормальное исследование, направляемое ими, не могло создать законы, которые открыл Галилей. Оно могло лишь привести и привело, хотя и другим путем, к серии кризисов, из которых возникло представление Галилея о колебании камня. В результате этих кризисов и других интеллектуальных изменений, помимо этого, Галилей увидел качание камня совершенно иным образом. Работы Архимеда о плавании тел позволили считать среду несущественным фактором; теория побуждения представила движение симметричным и непрерывным. А неоплатонизм направил внимание Галилея на фактор движения по окружности15. Поэтому он измерял только вес, радиус, угловое смещение и период колебаний, которые были заданы точно, так что их можно было истолковать таким образом, что в результате получились законы Галилея для маятника. В данном случае интерпретация оказалась почти излишней. Если принимались парадигмы Галилея, то закономерности, подобные закономерностям колебания маятника, были почти доступны для проверки. В самом деле, как иначе мы объясним открытие Галилея, что период колебания гири маятника совершенно независим от амплитуды, — открытие, которое нормальная наука, начиная с Галилея, вынуждена была вырвать с корнем и которое сейчас мы совершенно не можем документально подтвердить. Закономерности, которые не могли существовать для аристотелианцев (и которые фактически никогда точно не подкреплялись наблюдением), были для человека, наблюдающего за качанием камня, как это делал Галилей, выводами из непосредственного опыта.

Возможно, этот пример слишком фантастичен, так как аристотелианцы не записывали никаких обсуждений о колебаниях грузов. Для их парадигмы это было чрезвычайно сложное явление. Но аристотелианцы действительно обсуждали более простой случай свободного падения груза, и при этом явно обнаруживаются те же самые отличия в въдении. Размышляя над падением камня, Аристотель видел изменение его состояния, а не процесс. Он измерял движение поэтому общим пройденным расстоянием и общим временем движения, параметрами, которые определяют то, что мы сегодня могли бы назвать не скоростью, а средней скоростью16. Подобным же образом, в силу того что камень направлялся своей природой к достижению конечного пункта покоя, Аристотель считал главным параметром для любого момента движения расстояние до конечной точки, а не расстояние от начала движения17. Эти концептуальные параметры лежат в основании и определяют смысл большинства его хорошо известных “законов движения”. Однако частично с помощью парадигмы побуждающей силы, частично посредством концепции, известной как доктрина множественности форм, схоластическая критика отошла от подобного способа рассмотрения движения. Камень, который движется под действием побуждающей силы, накапливает ее все больше и больше по мере того, как он отдаляется от исходного пункта; следовательно, соответствующим параметром становится расстояние от начала, а не расстояние до конца движения. Кроме того, аристотелевское понятие скорости было расщеплено схоластами на понятия, которые вскоре после Галилея стали соответствовать нашим понятиям средней скорости и мгновенной скорости. Но когда мы смотрим через призму парадигмы, элементами которой являлись эти понятия, то в падении камня, подобно колебанию маятника, непосредственным образом обнаруживаются законы, им управляющие. Галилей не был одним из первых, кто предположил, что камни падают с постоянным ускорением18. Кроме того, он доказал свою теорему, относящуюся к этому вопросу вместе со многими ее следствиями до своих экспериментов на наклонной плоскости. Эта теорема была еще одной теоремой в структуре новых закономерностей, доступных гению в мире, который определялся совместно природой и парадигмами и в котором Галилей и его последователи были воспитаны. Живя в этом мире, Галилей мог бы тем не менее в случае необходимости объяснить, почему Аристотель видел мир именно так, как он его видел. Однако непосредственное содержание опытов Галилея с падающими камнями было совсем не таким, как у Аристотеля.

Конечно, из этого ни в коем случае не следует, что мы заинтересованы в “непосредственном опыте”, то есть в характерных чертах восприятия, которые парадигма так явно выдвигает на первый план, что они непосредственным образом обнаруживают свои закономерности. Характерные черты восприятия должны, очевидно, изменяться с принятием ученым определенных обязательств по отношению к парадигме, но эти черты далеко не такие, какие мы обычно имеем в виду, когда говорим о необработанных данных или о непосредственном чувственном опыте, с которых полагается начинать научное исследование. Возможно, непосредственный опыт следовало бы оставить в стороне как таинственный флюид и вместо этого обсуждать конкретные операции и измерения, которые ученый выполняет в своей лаборатории. Или, может быть, анализ следует распространить на область, еще более далекую от непосредственных данных. Например, он может быть осуществлен в терминах некоторого нейтрального языка наблюдения, языка, вероятно предназначенного привести в соответствие с изображением на сетчатке глаза ту среду, которую видит ученый. Только на одном из этих путей мы можем надеяться восстановить область, где опыт вновь приобретает устойчивость раз и навсегда — где колебания маятника и сдерживаемое падение будут не различными восприятиями, а, скорее, различными интерпретациями несомненных данных, полученных на основе наблюдения качающегося камня.

Но является ли чувственный опыт постоянным и нейтральным? Являются ли теории просто результатом интерпретации человеком полученных данных? Эпистемологическая точка зрения, которой чаще всего руководствовалась западная философия в течение трех столетий, утверждает сразу же и недвусмысленно — да! За неимением сколько-нибудь развитой альтернативы я считаю невозможным полностью отказаться от этой точки зрения. Но она больше не функционирует эффективно, а попытки улучшить ее путем введения нейтрального языка наблюдения в настоящее время кажутся мне безнадежными.

Операции и измерения, которые ученый предпринимает в лаборатории, не являются “готовыми данными” опыта, но скорее данными, “собранными с большим трудом”. Они не являются тем, что ученый видит, по крайней мере до того, как его исследование даст первые плоды и его внимание сосредоточится на них. Скорее они являются конкретными указаниями на содержание более элементарных восприятий, и как таковые они отобраны для тщательного анализа в русле нормального исследования только потому, что обещают богатые возможности для успешной разработки принятой парадигмы. Операции и измерения детерминированы парадигмой намного более явно, нежели непосредственный опыт, из которого они частично происходят. Наука не имеет дела со всеми возможными лабораторными операциями. Вместо этого она отбирает операции, уместные с точки зрения сопоставления парадигмы с непосредственным опытом, который эта парадигма частично определяет. В результате с помощью различных парадигм ученые занимаются конкретными лабораторными операциями. Измерения, которые должны быть выполнены в эксперименте с маятником, не соответствуют измерениям в случае сдерживаемого падения. Таким же образом операции, пригодные для выявления свойств кислорода, не одинаковы с операциями, использовавшимися при исследовании характеристик дефлогистированного воздуха.

Что касается языка чистого наблюдения, то, возможно, он будет еще создан. Но спустя три столетия после Декарта наши упования на такую возможность все еще зависят исключительно от теории восприятия и разума. А современная психологическая экспериментальная деятельность быстро умножает явления, с которыми такая теория едва ли может справиться. Эксперименты с уткой и кроликом показывают, что два человека при одном и том же изображении на сетчатке глаза могут видеть различные вещи; линзы, переворачивающие изображение, свидетельствуют, что два человека при различном изображении на сетчатке глаза могут видеть одну и ту же вещь. Психология дает множество других очевидных фактов подобного эффекта, и сомнения, которые следуют из этого, легко усиливаются историей попыток представить фактический язык наблюдения. Ни одна современная попытка достичь такого финала до сих пор не подвела даже близко к всеобщему языку чистых восприятий. Те же попытки, которые подвели ближе всех других к этой цели, имеют одну общую характеристику, которая значительно подкрепляет основные тезисы нашего очерка. Они с самого начала предполагают наличие парадигмы, взятой либо из данной научной теории, либо из фрагментарных рассуждений с позиций здравого смысла, а затем пытаются элиминировать из парадигмы все нелогические и неперцептуальные термины. В некоторых областях обсуждения эти усилия привели к далеко идущим и многообещающим результатом. Не может быть никакого сомнения, что усилия такого рода заслуживают продолжения. Но их результатом оказывается язык, который, подобно языкам, используемым в науках, включает множество предположений относительно природы и отказывается функционировать в тот момент, когда эти предположения не оправдываются. Нельсон Гудмен точно указывает этот момент, когда описывает задачи своей работы “Структура явления”: “Это счастье, что нечего [кроме явлений, существование которых известно] больше выяснять, ибо понятие “возможных” случаев, которые еще не существуют, но могут существовать, далеко не ясно”19. Ни один язык, ограничивающийся подобным описанием мира, известного исчерпывающе и заранее, не может дать нейтрального и объективного описания “данного”. Философские исследования к тому же не дают даже намека на то, каким должен быть язык, способный на что-либо подобное.

В такой ситуации мы по крайней мере можем предположить, что ученые правы в принципе, как и на практике, когда истолковывают кислород и маятники (а, возможно, также атомы и электроны) как фундаментальные ингредиенты их непосредственного опыта. В результате мир ученого, представляющий собой воплощенный в парадигме опыт расы, культурной группы и, наконец, профессии, должен быть заполнен планетами и маятниками, конденсаторами, сложными рудами и другими подобными объектами. В сравнении с этими объектами восприятия чтение показаний стрелки измерительного прибора и изображения на сетчатке глаза являются тщательно разработанными конструкциями, к которым опыт имеет непосредственное отношение только тогда, когда ученый для специальных целей своего исследования приспосабливает что-то так, как оно должно быть в том или другом случае. Не следует полагать, что когда ученый наблюдает за качающимся камнем, то единственное, что он видит, так это маятник. (Мы уже отмечали, что члены иного научного сообщества могли видеть сдерживаемое падение.) Однако следует полагать, что ученый, смотрящий на качающийся камень, может не иметь опыта, который в принципе более элементарен, чем восприятие колебания маятника. Другая возможность состоит не в некотором гипотетически “закрепленном” восприятии, а в восприятии с помощью другой парадигмы, которая что-то дополняет к восприятию качающегося камня.

Все это может выглядеть более обоснованным, если мы снова вспомним, что ни ученый, ни дилетант не приучены видеть мир по частям или пункт за пунктом. Исключая случаи, когда все концептуальные и операциональные категории подготовлены заранее (например, для открытия еще одного трансуранового элемента или для того, чтобы увидеть новый дом), и ученый и дилетант выделяют целые области из потока опыта. Ребенок, который переносит слово “мама” со всех людей на всех женщин, а затем на свою мать, также не просто узнает, что означает слово “мама” или кем является его мать. В это же самое время он усваивает и некоторые различия между мужчинами и женщинами, а также манеру поведения по отношению к нему, характерную только для одной женщины из всех. Его реакции, ожидания и убеждения (большая часть его восприятия мира) изменяются соответственно. По той же причине коперниканцы, которые отказались от традиционного обозначения солнца “планетой”, не только получили знание того, что охватывается словом “планета” или чем является солнце. Взамен они изменили значение слова “планета” так, что оно смогло по-прежнему содействовать полезным различениям в мире, где все небесные тела, не только солнце, воспринимались по-иному, нежели они казались до этого. Такой взгляд можно было бы отстаивать относительно любого ранее приведенного нами примера. Видеть кислород вместо дефлогистированного воздуха, конденсатор вместо лейденской банки или маятник вместо сдерживаемого падения — это только одна часть в общем сдвиге научного въдения великого множества рассмотренных химических, электрических или динамических явлений. Парадигмы определяют большие области опыта одновременно.

Однако этот поиск операционального определения или чистого языка наблюдений можно начать лишь после того, как опыт будет таким образом детерминирован. Ученый или философ, который спрашивает, какие измерения или изображения на сетчатке глаза делают маятник тем, чем он есть, должен уже уметь распознать маятник, когда увидит его. Если он увидел вместо этого сдерживаемое цепочкой падение, то такой вопрос даже не может быть им поставлен. А если он увидел маятник в том же самом виде, в каком он видел камертон или колеблющиеся весы, то на его вопрос нельзя ответить. По крайней мере на него нельзя ответить тем же самым способом, потому что в таком случае это не будет ответом именно на поставленный вопрос. Следовательно, вопросы об изображении на сетчатке или о последовательности специальных лабораторных операций, хотя они всегда правильны, а иногда и чрезвычайно плодотворны, предполагают мир уже определенным способом расчлененным перцептуально и концептуально. В некотором смысле такие вопросы являются элементами нормальной науки, ибо они зависят от существования парадигмы и предполагают различные ответы в результате изменения парадигмы.

Чтобы закончить этот раздел, оставим в стороне рассмотрение изображения на сетчатке глаза и снова ограничим внимание лабораторными операциями, которые обеспечивают ученого хотя и фрагментарными, но зато конкретными указаниями на то, что он уже видел. Один из способов, которым лабораторные операции изменяются с помощью парадигм, уже рассматривался неоднократно. После научной революции множество старых измерений и операций становится нецелесообразными и заменяются соответственно другими. Нельзя применять одни и те же проверочные операции как к кислороду, так и к дефлогистированному воздуху. Но изменения подобного рода никогда не бывают всеобщими. Что бы ученый после революции ни увидел, он все еще смотрит на тот же самый мир. Более того, значительная часть языкового аппарата, как и большая часть лабораторных инструментов, все еще остаются такими же, какими они были до научной революции, хотя ученый может начать использовать их по-новому. В результате наука после периода революции всегда включает множество тех же самых операций, осуществляемых теми же самыми инструментами, и описывает объекты в тех же самых терминах, как и в дореволюционный период. Если все эти устойчивые манипуляции вообще подвергаются изменению, то оно должно касаться либо их отношения к парадигме, либо конкретных результатов. Теперь я считаю на основе последнего примера, который я привожу ниже, что имеют место оба вида изменений. Рассматривая работу Дальтона и его современников, мы увидим, что одна и та же операция, когда она применяется к природе через другую парадигму, может свидетельствовать совершенно о другой стороне закономерности природы. Кроме того, мы увидим, что изредка старая манипуляция, выступая в новой роли, даст другие конкретные результаты.

В течение большей части XVIII века и в XIX веке европейские химики почти все верили, что элементарные атомы, из которых состоят все химические вещества, удерживаются вместе силами взаимного сродства. Так, кусок серебра составляет единство в силу сродства между частицами серебра (до периода после Лавуазье эти частицы мыслились как составленные из еще более элементарных частиц). По этой же теории серебро растворяется в кислоте (или соль — в воде) потому, что частицы кислоты притягивают частицы серебра (или частицы воды притягивают частицы соли) более сильно, нежели частицы этих растворяемых веществ притягиваются друг к другу. Или другой пример. Медь должна растворяться в растворе серебра с выпадением серебра в осадок, потому что сродство между кислотой и медью более сильное, чем сродство кислоты и серебра. Множество других явлений было истолковано тем же самым способом. В XVIII веке теория избирательного сродства была превосходной химической парадигмой, широко и иногда успешно используемой при постановке химических экспериментов и анализе их результатов20.

Однако теория сродства резко отличала физические смеси от химических соединений, причем производила это способом, который сделался необычным после признания работ Дальтона. Химики XVIII века признавали два вида процессов. Когда смешивание вызывало выделение тепла, света, пузырьков газа или какие-либо подобные эффекты, то в этом случае считалось, что происходит химическое соединение. Если, с другой стороны, частицы в смеси можно было различить визуально или отделить механически, то это было лишь физическое смешивание. Но в огромном числе промежуточных случаев (растворение соли в воде, сплавы, стекло, кислород в атмосфере и так далее) столь грубые критерии приносили мало пользы. Руководимые своей парадигмой, большинство химиков рассматривали весь этот промежуточный ряд как химический, потому что процессы, свойственные ему, целиком управлялись силами одного и того же типа. Растворение соли в воде, кислорода в азоте как раз давали такой же пример химического соединения, как и соединение, образованное в результате окисления меди. Аргументация в пользу того, чтобы рассматривать растворы как химические соединения, была очень веской. Теория сродства в свою очередь хорошо подтверждалась. Кроме того, образование соединений объяснялось наблюдаемой гомогенностью раствора. Например, если кислород и азот были только смесью, а не соединены в атмосфере, тогда более тяжелый газ, кислород, должен был опускаться на дно. Дальтон, который считал атмосферу смесью, никогда не мог удовлетворительно объяснить тот факт, что кислород ведет себя иначе. Восприятие его атомистической теории в конце концов породило аномалию там, где ее до того не было21.

Невольно хочется сказать, что отличие взглядов химиков, которые рассматривали растворы как соединения, от взглядов их преемников касалось только определений. В одном отношении дело могло обстоять именно таким образом. Но это справедливо не в том смысле, что делает определения просто конвенционально удобными. В XVIII веке химики не могли в полной мере отличить с помощью операциональных проверок смеси от соединений, возможно, их и нельзя было отличить на тогдашнем уровне развития науки. Даже если химики прибегали к таким проверкам, они должны были искать критерий, который позволил бы рассматривать такой раствор как соединение. Различение смеси и раствора составляло элемент их парадигмы — элемент того способа, которым химики рассматривали всю область исследования, — и в этом качестве он обладал приоритетом по отношению к любому отдельно взятому лабораторному эксперименту, хотя и не по отношению к накопленному опыту химии в целом.

Но поскольку химия рассматривалась под таким углом зрения, химические явления стали примерами законов, отличных от тех, которые возникли с принятием новой парадигмы Дальтона. В частности, пока растворы рассматривались как соединения, никакие химические эксперименты, сколько бы их ни ставили, не могли сами по себе привести к закону кратных отношений. В конце XVIII века было широко известно, что некоторые соединения, как правило, характеризовались кратными весовыми отношениями своих компонентов. Для некоторых категорий реакций немецкий химик Рихтер получил даже дополнительные закономерности, в настоящее время включаемые в закон химических эквивалентов22. Но ни один химик не использовал эти закономерности, если не считать рецепты, и ни один из них почти до конца века не подумал о том, чтобы обобщить их. Если и наблюдались очевидные контрпримеры, подобно стеклу или растворению соли в воде, то все же ни одно обобщение не было возможно без отказа от теории сродства и без перестройки концептуальных границ области химических явлений. Такое заключение стало неизбежным к самому концу столетия после знаменитой дискуссии между французскими химиками Прустом и Бертолле. Первый заявлял, что все химические реакции совершались в постоянных пропорциях, а второй отрицал это. Каждый подобрал внушительное экспериментальное подтверждение для своей точки зрения. Тем не менее два ученых спорили друг с другом, хотя результаты их дискуссии были совершенно неубедительны. Там, где Бертолле видел соединение, которое могло менять пропорции входящих в него компонентов, Пруст видел только физическую смесь23. Этот вопрос невозможно было удовлетворительно решить ни экспериментом, ни изменением конвенционального определения. Два исследователя столь же фундаментально расходились друг с другом, как Галилей и Аристотель.

Такова была ситуация в те годы, когда Дальтон предпринял исследование, которое в конце концов привело его к знаменитой атомистической теории в химии. Но до самых последних стадий этих исследований Дальтон не был химиком и не интересовался химией. Он был метеорологом, интересующимся (для себя) физическими проблемами абсорбции газов в воде и воды в атмосфере. Частью потому, что его навыки были приобретены для другой специальности, а частично благодаря работе по своей специальности он подходил к этим проблемам с точки зрения парадигмы, отличающейся от парадигмы современных ему химиков. В частности, он рассматривал смесь газов или поглощение газов в воде как физический процесс, в котором виды сродства не играли никакой роли. Поэтому для Дальтона наблюдаемая гомогенность растворов была проблемой, но проблемой, которую, как он полагал, можно решить, если будет возможность определить относительные объемы и веса различных атомных частиц в его экспериментальной смеси. Требовалось определить эти размеры и веса. Но данная задача заставила Дальтона в конце концов обратиться к химии, подсказав ему с самого начала предположение, что в некотором ограниченном ряде реакций, рассматриваемых как химические, атомы могут комбинироваться только в отношении один к одному или в некоторой другой простой, целочисленной пропорции24. Это естественное предположение помогло ему определить размеры и веса элементарных частиц, но зато превратило закон постоянства отношений в тавтологию. Для Дальтона любая реакция, компоненты которой не подчинялись кратным отношениям, не была еще ipso facto* чисто химическим процессом. Закон, который нельзя было установить экспериментально до работы Дальтона, с признанием этой работы становится конститутивным принципом, в силу которого ни один ряд химических измерений не может быть нарушен. После работ Дальтона те же, что и раньше, химические эксперименты стали основой для совершенно иных обобщений. Это событие может служить для нас едва ли не лучшим из типичных примеров научной революции.

Излишне говорить, что выводы Дальтона повсеместно подверглись нападкам, когда были впервые представлены на обсуждение. В частности, Бертолле так никогда и не удалось в этом убедить. Причем если смотреть в корень данного вопроса, то следует признать, что Бертолле и не нуждался в этом. Но для большинства химиков новая парадигма Дальтона оказалась убедительной там, где парадигма Пруста была уязвимой, ибо она давала выводы, намного более емкие и более значительные, чем если бы она была просто новым критерием для различения смеси и соединения. Например, если атомы могли соединяться химически только в простых целочисленных пропорциях, то пересмотр существующих химических данных должен был выявить примеры как кратных, так и постоянных соотношений. Химики перестали писать, что двуокись, скажем, углерода содержит 56% и 72% веса кислорода. Вместо этого они стали писать, что одна весовая часть углерода соединяется или с 1,3, или с 2,6 весовыми частями кислорода. Когда результаты старых лабораторных операций были записаны таким способом, отношение стало самоочевидным; то же самое наблюдалось при анализе многих хорошо известных реакций и, кроме того, многих новых. Добавим к этому, что парадигма Дальтона сделала возможным уяснение работы Рихтера и признание общего характера ее выводов. К тому же она навела на мысль поставить новые эксперименты, в частности эксперименты Гей-Люссака, касающиеся объема соединяющихся газов, а они в свою очередь обнаружили другие закономерности, о которых химики ранее и не помышляли. Химики взяли у Дальтона не новые экспериментальные законы, а новый способ проведения химических исследований (сам Дальтон называл это “новой системой философии химии”), и способ этот оказался настолько плодотворным, что только небольшое число химиков старшего поколения во Франции и Англии были способны сопротивляться ему25. В результате химики стали работать в новом мире, где реакции происходили совершенно иначе, нежели раньше.

Так как этот процесс продолжался, возникли и другие характерные и очень важные изменения. Здесь и там стали обновляться сами количественные данные. Когда Дальтон впервые анализировал литературу по химии в поисках данных для обоснования своей физической теории, он обнаружил несколько пригодных записей реакций, однако едва ли вероятно, что он не встретился с другими записями, которые были для него непригодны. Собственные измерения Пруста, касающиеся реакций с двуокисью меди, например, показали, что весовое отношение кислорода в них составляет , а не , как требовала атомистическая теория; Пруст был как раз тем исследователем, от которого можно было ожидать нахождения тех пропорций, которые открыл Дальтон26. Другими словами, он был прекрасным экспериментатором, и его точка зрения на отношение между смесями и соединениями близка к точке зрения Дальтона. Но не так легко заставить природу удовлетворять требования соответствующей парадигмы. Вот почему головоломки нормальной науки столь завлекательны, а измерения, предпринимаемые без парадигмы, так редко приводят к каким-либо результатам вообще. Поэтому химики не могли просто принять теорию Дальтона как очевидную, ибо много фактов в то время говорило отнюдь не в ее пользу. Больше того, даже после принятия теории они должны были биться с природой, стремясь согласовать ее с теорией, и это движение по инерции в известной степени захватило даже следующее поколение химиков. Когда это случилось, даже процентный состав хорошо известных соединений оказался иным. Данные сами изменились. Это последнее, что мы имеем в виду, когда говорим, что после революции ученые работают в другом мире.

 

1 Оригинальные эксперименты были осуществлены Дж. М. Стрэт­тоном: G. M. Stratton. Vision without Inversion of the Retinal Image. — “Psychological Review”, IV, 1897, p. 341—360, 463—481. Более современное рассмотрение дано X. А. Карром: H. A. Carr. An Introduction to Space Perception. New York, 1935, p. 18—57.

2 См., например: A. H. Hastorf. The Influence of Suggestion on the Relationship between Stimulus Size and Perceived Distance. — “Journal of Psychology”, XXIX, 1950, p. 195—217; J. S. Bruner, L. Postman and J. Rodrigues. Expectations and the Perception of Color. — “American Journal of Psychology”, LXIV, 1951, p. 216—227.

3 N. R. Hanson. Patterns of Discovery. Cambridge, 1958, chap. I.

4 Р. Doig. A Concise History of Astronomy. London, 1950, p. 115—116.

5 R. Wolf. Geschichte der Astronomie. Mьnchen, 1877, S. 513—515, 683—693. Отметим, в частности, сложность вольфовского объяснения этих открытий как следствий из закона Боде.

6 J. Needham. Science and Civilization in China, III. Cambridge, 1959, p. 423—429; 434—436.

7 T. S. Kuhn. The Copernican Revolution. Cambridge, Mass., 1957, p. 206—209.

8 D. Roller and D. H. D. Roller. The Development of the Concept of Electric Charge. Cambridge, Mass., 1954, p. 21—29.

9 См. обсуждение в VII разделе.

10 G. Galilei. Dialogues concerning Two New Sciences. Evanston. Ill., 1946, p. 80—81, 162—166.

11 Ibid., p. 91—94, 244.

12 M. Clagett. The Science of Mechanics in the Middle Ages. Madison, Wis., 1959, p. 537—538, 570.

13 J. Hadamard. Subconscient intuition, et logique dans la recherche scientifique (Confйrence faite au Palais de la Dйcouverte le 8 Dйcembre 1945 [Alenзon, n. d.], p. 7—8). Гораздо более полное рассмотрение, хотя исключительно ограниченное математическими нововведениями, см. у того же автора: “The Psychology of Invention in the Mathematical Field”. Princeton, 1949.

14 Т. S. Kuhn. A Function for Thought Experiments, in: “Mйlanges Alexandre Koyrй”, ed. R. Taton and I. B. Cohen. Hermann, Paris, 1964.

15 A. Koyrй. Etudes Galilйennes. Paris, 1939, I, p. 46—51; и “Galileo and Plato”. — “Journal of the History of Ideas”, IV, 1943, p. 400—428.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: