Напряженность результирующего поля внутри диэлектрика равна




E = E 0/(1+c)= E 0/e

 

Из опыта следует, что для большого класса диэлектриков за исключением сегнетоэлектриков, поляризованность Р линейно зависит от напряженно­сти поля Е. Если диэлектрик изотропный и Е не слишком велико, то

где c — диэлектрическая восприимчивость

вещества, характеризующая свойства ди­электрика; c — величина безразмерная; притом всегда c>0 и для большинства диэлектриков (твердых и жидких) состав­ляет несколько единиц.

Безразмерная величина

e=1+c (88.6)

называется диэлектрической проницаемо­стью среды. В идим, что e показывает, во сколько раз поле ослабляется диэлектриком, характе­ризуя количественно свойство диэлект­рика поляризоваться в электрическом поле.

 

25) Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действо­вать электростатическое поле, в результа­те чего они начнут перемещаться. Переме­щение зарядов (ток) продолжается до тех пор, пока не установится равновесное рас­пределение зарядов, при котором электро­статическое поле внутри проводника обра­щается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напря­женность поля во всех точках внутри проводника равна нулю:

Е==0.

Отсутствие поля внутри проводника означает, что потенциал во всех точках внутри проводника постоя­нен (j=const), т.е. поверхность провод­ника в электростатическом поле является эквипотенциальной. Отсюда же следует, что вектор напряженности поля на внешней поверхности проводника направ­лен по нормали к каждой точке его по­верхности. Если бы это было не так, то под действием касательной составляющей Е заряды начали бы по поверхности про­водника перемещаться, что, в свою оче­редь, противоречило бы равновесному рас­пределению зарядов.

Если проводнику сообщить некоторый заряд Q, то нескомпенсированные заряды располагаются только на поверхности про­водника. Если во внешнее электростатическое поле внести нейтральный проводник, то свободные заряды (электроны, ионы) бу­дут перемещаться: положительные — по полю, отрицательные — против поля.На одном конце проводника будет скапливаться избыток положитель­ного заряда, на другом — избыток отрица­тельного. Эти заряды называются индуци­рованными. Процесс будет происходить до тех пор, пока напряженность поля внутри проводника не станет равной нулю, а ли­нии напряженности вне проводника — перпендикулярными его поверхности. Таким образом, нейтральный проводник, внесенный в электростатиче­ское поле, разрывает часть линий напря­женности; они заканчиваются на отрица­тельных индуцированных зарядах и вновь начинаются на положительных. Индуци­рованные заряды распределяются на внешней поверхности проводника. Явле­ние перераспределения поверхностных за­рядов на проводнике во внешнем электро­статическом поле называется электроста­тической индукцией.

Электрическая емкость уединенного проводника

Рассмотрим уединенный проводник, т. е. проводник, который удален от других проводников, тел и зарядов. Его потенци­ал, прямо пропорциона­лен заряду проводника. Из опыта следует, что разные проводники, будучи одинаково заряженными, принимают различные по­тенциалы. Поэтому для уединенного про­водника можно записать

Q=Сj.

Величину

C=Q/j (93.1)

называют электроемкостью (или просто емкостью) уединенного проводника. Ем­кость уединенного проводника определяет­ся зарядом, сообщение которого провод­нику изменяет его потенциал на единицу. Емкость проводника зависит от его размеров и формы, но не зависит от мате­риала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциа­ла. Сказанное не противоречит формуле (93.1), так как она лишь показывает, что емкость уединенного проводника прямо пропорциональна его заряду и обратно пропорциональна потенциалу.

Единица электроемкости — фарад (Ф): 1 Ф — емкость такого уединенного проводника, потенциал которого изменяет­ся на 1В при сообщении ему заряда в 1 Кл.

Фарад — очень большая величина, поэтому на практике используются доль­ные единицы — миллифарад (мФ), микро­фарад (мкФ), нанофарад (нФ), пикофарад (пФ).

 

Электроемкость конденсаторов

для того чтобы про­водник обладал большой емкостью, он дол­жен иметь очень большие размеры. На практике, однако, необходимы устройства, обладающие способностью при малых раз­мерах и небольших относительно окружа­ющих тел потенциалах накапливать зна­чительные по величине заряды, иными сло­вами, обладать большой емкостью. Эти устройства получили название конденса­торов.

Если к заряженному проводнику при­ближать другие тела, то на них возникают индуцированные (на проводнике) или свя­занные (на диэлектрике) заряды, причем ближайшими к наводящему заряду Qбу­дут заряды противоположного знака. Эти заряды, естественно, ослабляют поле, соз­даваемое зарядом Q, т. е. понижают по­тенциал проводника, что приводит (см. (93.1)) к повышению его электро­емкости.

Конденсатор состоит из двух провод­ников (обкладок), разделенных диэлект­риком. На емкость конденсатора не должны оказывать влияния окружающие тела, поэ­тому проводникам придают такую форму, чтобы поле, создаваемое накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) два коакси­альных цилиндра; 3) две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, цилиндрические и сферические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончают­ся на другой, поэтому свободные заряды, возникающие на разных обкладках, явля­ются равными по модулю разноименными зарядами. Под емкостью конденсатора по­нимается физическая величина, равная отношению заряда Q, накопленного в кон­денсаторе, к разности потенциалов (j1-j2) между его обкладками:

C = Q /(j1-j2).

Емкость конденсаторов любой формы прямо пропорциональна диэлек­трической проницаемости диэлектрика, за­полняющего пространство между обк­ладками. Поэтому применение в качест­ве прослойки сегнетоэлектриков значи­тельно увеличивает емкость конденсато­ров.

Конденсаторы характеризуются про­бивным напряжением — разностью потен­циалов между обкладками конденсатора, при которой происходит пробой — элек­трический разряд через слой диэлектрика в конденсаторе. Пробивное напряжение зависит от формы обкладок, свойств ди­электрика и его толщины.

Для увеличения емкости и варьирова­ния ее возможных значений конденсаторы соединяют в батареи, при этом использу­ется их параллельное и последовательное соединение.

1. Параллельное соединение конденса­торов. У параллельно соединен­ных конденсаторов разность потенциалов на обкладках конденсаторов одинакова и равна j А-jB. Если емкости отдельных конденсаторов С 1, С 2 ,..., Сn, то их заряды равны

Q1=C1(jA-jB),

Q2=C2(jA-jB),

Qnn(jA-jB), а заряд батареи конденсаторов

Полная емкость батареи

т. е. при параллельном соединении кон­денсаторов она равна сумме емкостей от­дельных конденсаторов.

Последовательное соединение кон­денсаторов. У последовательно соединенных конденсаторов заряды всех обкладок равны по модулю, а разность потенциалов на зажимах батареи

где для любого из рассматриваемых кон­денсаторов

С другой стороны,

откуда

т. е. при последовательном соединении конденсаторов суммируются величины, об­ратные емкостям. Таким образом, при по­следовательном соединении конденсаторов результирующая емкость С всегда меньше наименьшей емкости, используемой в ба­тарее.

 

26) В электродинамике — разделе учения об электричестве, в котором рассматривают­ся явления и процессы, обусловленные движением электрических зарядов или макроскопических заряженных тел,—важ­нейшим понятием является понятие элек­трического тока. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов. В проводнике под действием приложенно­го электрического поля Е свободные элек­трические заряды перемещаются: поло­жительные — по полю, отрицательные — против поля (рис. 146, а), т.е. в провод­нике возникает электрический ток, на­зываемый током проводимости. Если же упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела, то возникает так называемый конвекционный ток. Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей то­ка — заряженных частиц, способных перемещаться упорядоченно, а с другой — наличие электрического поля, энергия ко­торого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения поло­жительных зарядов.

Количественной мерой электрического тока служит сила тока I — скалярная фи­зическая величина, определяемая элек­трическим зарядом, проходящим через по­перечное сечение проводника в единицу времени:

I=dQ/dt.

Ток, сила и направление которого не изме­няются со временем, называется посто­янным. Для постоянного тока

I=Q/t,

где Q — электрический заряд, проходя­щий за время t через поперечное сечение проводника.

Единица силы тока — ампер (А). Физическая величина, определяемая силой тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярного направлению тока, на­зывается плотностью тока: j=dI/Ds . Плотность тока — вектор, ориентирован­ный по направлению тока, т. е. направле­ние вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока — ампер на метр в квадрате (А/м2).

Закон Ома и сопротивление проводников

Немецкий физик Г. Ом (1787—1854) эк­спериментально установил, что сила то­ка I, текущего по однородному металличе­скому проводнику (т. е. проводнику, в ко­тором не действуют сторонние силы), пропорциональна напряжению Uна концах проводника:

I=U/R, (98.1)

где R — электрическое сопротивление про­водника. Уравнение (98.1) выражает за­кон Ома для участка цепи (не содержаще­го источника э.д.с.): сила тока в проводни­ке прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. Формула (98.1) позволяет установить единицу со­противления — ом (Ом): 1 Ом — сопро­тивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А. Величина

G=1/R

называется электрической проводимостью

проводника. Единица проводимости — сименс (См): 1 См — проводимость участка электрической цепи сопротивлением 1 Ом. Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изго­товлен. Для однородного линейного про­водника сопротивление R прямо пропор­ционально его длине l и обратно пропор­ционально площади его поперечного сече­ния:

R=rl/S. (98.2)

где r — коэффициент пропорционально­сти, характеризующий материал провод­ника. Он называется удельным электриче­ским сопротивлением. Единица удель­ного электрического сопротивления — ом-метр (Ом•м). На практике наряду с медными применя­ются алюминиевые провода. Хотя алюми­ний и имеет большее, чем медь, удельное сопротивление, но зато обладает меньшей плотностью по сравне­нию с медью. j =g E. (98.5)

Выражение (98.5) — закон Ома в диффе­ренциальной форме, связывающий плот­ность тока в любой точке внутри провод­ника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.

в первом прибли­жении изменение удельного сопротивле­ния, а следовательно, и сопротивления, с температурой описывается линейным законом:

где r и r0, R и R 0— соответственно удель­ные сопротивления и сопротивления про­водника при t и 0 °С, a — температурный коэффициент сопротивления, для чистых металлов (при не очень низких температу­рах) близкий к 1/273 К-1. Значит, тем­пературная зависимость сопротивления может быть представлена в виде

R=aR0T,

где Т — термодинамическая температура.

Впоследствии было обнаружено, что сопротивление мно­гих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температу­рах Тк (0,14 — 20 К), называемых крити­ческими, характерных для каждого вещества, скачкообразно уменьшается до нуля (кривая 2), т.е. металл становится абсолютным проводником. Впервые это явление, называемое сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимо­сти объясняется на основе квантовой тео­рии. Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за ни­зких их критических температур. Правда, в настоящее время обнаружены и активно исследуются керамические материалы, об­ладающие сверхпроводимостью при темпе­ратуре выше 100 К.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: