Второе начало термодинамики




Рис.1

 

Если атмосферное давление на высоте h равно р (рис. 1), то на высоте h+dh оно равно p+dp (при dh>0 dp<0, так как давление с высотой уменьшается). Разность давлений р и p+dp равна весу газа, заключенного в объеме цилиндра высотой dh с основанием площадью 1 м2:

где ρ — плотность газа на высоте h (dh настолько мало, что при изменении высоты в этом интервале плотность газа можно считать постоянной). Значит,

(1)

Зная уравнение состояния идеального газа pV=(m/M) RT (m — масса газа, М — молярная масса газа), находим, что

Подставив это выражение в (1), получим

или

С изменением высоты от h1 до h2 давление изменяется от р1 до р2 (рис. 67), т. е.

или

(2)

В присутствии гравитационного поля (или, в общем случае, любого потенциального поля) на молекулы газа действует сила тяжести. В результате, концентрация молекул газа оказывается зависящей от высоты в соответствии с законом распределения Больцмана:

n = n 0exp(- mgh / kT)

где n - концентрация молекул на высоте h, n 0 - концентрация молекул на начальном уровне h = 0, m - масса частиц, g - ускорение свободного падения, k - постоянная Больцмана, T - температура.

Анимация показывает схематически движение молекул газа в присутствии гравитационного поля. Мы можем видеть, что концентрация молекул у дна сосуда оказывается выше, чем концентрация в верхней части сосуда. Под действием теплового движения молекулы подбрасываются вверх, а затем падают вниз за счет действия сил тяжести.

Если высота сосуда много меньше чем kT / mg, то зависимостью концентрации от высоты можно пренебречь. С другой стороны, в атмосфере концентрация молекул быстро уменьшается с увеличением высоты и, поэтому, величина атмосферного давления также уменьшается. Принимая во внимание, что P = nkT, мы можем записать так называемую барометрическую формулу, описывающую изменение атмосферного давления в зависимости от высоты:

P = P 0exp(- mgh / kT)

Измеряя давление за бортом самолёта, мы можем вычислить при помощи барометрической формулы приблизительную высоту полёта.

25. Взаимодействие молекул в газе, молекулы которого находятся на относительно большом расстоянии друг от друга, носит характер столкновений. От частоты столкновений зависит время протекания процессов, ведущих к установлению состояния термодинамического равновесия: диффузии, теплопроводности, электропроводности. Кроме того, от частоты соударений зависит протекание фазовых переходов в таких системах.

Длиной свободного пробега молекулы газа называется расстояние, пролетаемое молекулой от одного столкновения до следующего. Эта величина в процессе соударений изменяется случайным образом, поэтому необходимо ввести среднее значение этой физической величины.

Для определения частоты столкновений и длины свободного пробега допустим, что все молекулы покоятся, а одна из них движется со средней тепловой скоростью v. Пусть все молекулы имеют одинаковый диаметр d. Пусть концентрация молекул равна n, причем для виртуального двумерного движения под концентрацией следует понимать число частиц, относящееся к единице площади, а не к единице объема. Частицы движутся, причем после каждого столкновения изменяется направление движения частицы (рис. 1). За 1 секунду молекула пройдет путь, равный ее скорости, но траектория этого движения будет не прямая, а ломаная линия. Нарисуем 2 линии, параллельные прямолинейному участку траектории движения частицы, на расстоянии, равном диаметру молекулы, от этого участка. У каждого излома этих линий будет «стоять» частица, причем для того, чтобы летящая частица могла испытать с ней соударение, нужно, чтобы центр неподвижной частицы попал между параллельными линиями.


Рис. 1

 

Вычислим число ударов, испытываемых летящей частицей за одну секунду. За это время она проходит путь, равный скорости. Площадь, заключенная между параллельными линиями, приближенно равна произведению двойного диаметра на длину линии v, т.е. . Число частиц, находящихся на этой площади, равна . Это величина равна числу столкновений выделенной молекулы с другими частицами за 1 секунду. Разделив на эту величину путь v, пройденной молекулой за секунду, получим выражение для средней длины свободного пробега:

.

Эта формула получена в модели, в которой сталкивающаяся молекула имеет среднюю скорость, а остальные молекулы неподвижны. Учет реального движения других молекул довольно сложен, но практически не изменяет эту формулу, в ней дополнительно появляется лишь несущественный безразмерный множитель в знаменателе.

Длина свободного пробега молекулы — это среднее расстояние (обозначаемое ), которое частица пролетает за время свободного пробега от одного столкновения до следующего.

Длина свободного пробега каждой молекулы различна, поэтому в кинетической теории вводится понятие средней длины свободного пробега (<λ>). Величина <λ> является характеристикой всей совокупности молекул газа при заданных значениях давления и температуры.

Формула[править | править вики-текст]

, где — эффективное сечение молекулы, — концентрация молекул.

26. В неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос массы, энергии, импульса.

Диффузия обусловлена переносом массы, теплопроводность – переносом энергии, а вязкость – переносом импульса.

Для характеристики необратимых процессов переноса вводятся параметры теплового движения молекул: среднее число соударений молекулы в единицу времени и средняя длина свободного пробега молекул .

Среднее число соударений молекулы за 1 с: ,

где d – эффективный диаметр молекул, т.е. минимальное расстояние, на которое сближаются при столкновении центры двух молекул,

– эффективное сечение молекул, – концентрация молекул,

– средняя арифметическая скорость молекул.

Средняя длина свободного пробега молекул , т.е. средний путь, проходимый молекулой между двумя последовательными столкновениями:

.

При рассмотрении одномерных явлений переноса система отсчета выбирается так, чтобы ось х была ориентирована в направлении переноса.

1. Диффузия. Явление диффузии заключается в том, что происходит самопроизвольное взаимопроникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел. Диффузия сводится к переносу массы, возникает и продолжается до тех пор, пока на границе соприкосновения двух сред градиент плотности отличен от нуля.

Градиент плотности вдоль выбранной оси х, перпендикулярной плоскости соприкосновения двух сред, обозначается как и показывает как быстро изменяется величина плотности от точки к точке вдоль оси х.

Количественно явление диффузии подчиняется закону Фика:

,

где плотность потока массы, то есть величина, определяемая массой газа, диффундирующего через единичную площадку S в единицу времени,

градиент плотности газа в направлении x, перпендикулярном выбранной площадке S,

Dкоэффициент диффузии.

Знак минус в приведенной формуле означает, что перенос массы происходит в направлении убывания плотности.

Согласно молекулярно-кинетической теории идеального газа, коэффициент диффузии D: ,

где – средняя скорость теплового движения молекул,

– средняя длина свободного пробега молекул.

2. Теплопроводность. Если в одной области газа температура больше,чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, то есть процесс выравнивания температуры. Этот процесс переноса энергии, называемый теплопроводностью, возникает и продолжается до тех пор, пока на границе соприкосновения двух частей газа градиент температуры отличен от нуля.

 

Градиент температуры Т газа вдоль выбранной оси х, перпендикулярной плоскости соприкосновения двух частей газа, имеющих различную температуру, обозначается как и показывает как быстро изменяется температура газа от точки к точке вдоль оси х.

Количественно теплопроводность подчиняется закону Фурье:

,

где плотность теплового потока, определяемая энергией, переносимой в форме теплоты через единичную площадку S в единицу времени,

– градиент температуры в направлении x, перпендикулярном выбранной площадке S,

коэффициент теплопроводности.

Знак минус в приведенной формуле означает, что при теплопроводности энергия переносится в направлении убывания температуры.

Согласно молекулярно-кинетической теории идеального газа, коэффициент теплопроводности : ,

где – удельная теплоемкость газа при изохорном процессе (количество теплоты, необходимое для изохорного нагревания 1 кг газа на 1 К),

– плотность газа,

– средняя скорость теплового движения молекул,

– средняя длина свободного пробега молекул.

3. Вязкость. Вязкость это свойство жидкости или газа, обусловленное внутренним трением между соприкасающимися параллельными слоями жидкости или газа, движущимися с различными скоростями. В результате, импульс слоя, движущегося быстрее, уменьшается, а движущегося медленнее – увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее. Другими словами, внутреннее трение приводит к переносу импульса от одного движущегося слоя жидкости или газа к другому соприкасающемуся с ним слою.

Количественно сила внутреннего трения между двумя соприкасающимися слоями жидкости или газа подчиняется закону Ньютона:

,

где hкоэффициент динамической вязкости,

– градиент скорости, показывающий быстроту изменения скорости течения жидкости или газа от слоя к слою в направлении х, перпендикулярном направлению движения слоев,

S – площадь соприкосновения слоев жидкости или газа, на которые действует сила внутреннего трения F.

Закон Ньютона для внутреннего трения можно представить в виде:

,

где плотность потока импульса – величина, определяемая импульсом, переносимым в единицу времени через единичную площадку S соприкосновения слоев жидкости или газа в направлении оси х, перпендикулярном направлению движения слоев жидкости или газа.

Знак минус в приведенной формуле означает, что импульс переносится от слоя к слою жидкости (газа) в направлении убывания скорости их движения.

Согласно молекулярно-кинетической теории идеального газа, коэффициент

 


динамической вязкости идеального газа h определяется следующим образом:

,

где – плотность газа,

– средняя скорость теплового движения молекул,

– средняя длина свободного пробега молекул.

27. Повторение. Закон сохранения полной механической энергии: полная механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Систему называют замкнутой, если все ее компоненты взаимодействуют только между собой.

Совершение работы и выделение энергии при термодинамических процессах говорит о том, что термодинамические системы обладают запасом внутренней энергии.

Под внутренней энергией системы U в термодинамике понимают сумму кинетической энергии движения всех микрочастиц системы (атомов или молекул) и потенциальной энергии их взаимодействия между собой. Подчеркнем, что механическая энергия (потенциальная энергия тела, поднятого под поверхно­стью Земли и кинетическая энергия его движения как целого) не входит во внутреннюю энергию.

 

СПОСОБЫИЗМЕНЕНИЯ ВНУТРЕННЕЙ ЭНЕРГИИ

 

Опыт показывает, что существуют два способа изменения внутренней энергии системы — совершение механической работы над системой и теплообмен с другими системами.

Первый способ изменения внутренней энергии — совершение механической работы А' внешними силами над системой или самой системой над внешними телами А (А = -А'). При совершении работы внутренняя энергия системы изменяется за счет энергии внешнего источника. Так, при накачивании велосипедного колеса система нагревается за счет работы насоса, при помощи трения наши предки смогли получить огонь и т. д.

Второй способ изменения внутренней энергии системы (без совершения работы) называется теплообменом (теплопередачей). Количество энергии, полученное или отданное телом при таком процессе, называется количеством теплоты и обозначается ΔQ.

Существуют три вида теплообмена: теплопроводность, конвекция, тепловое излучение.

При теплопроводности происходит передача теплоты от более нагретого тела к менее нагретому при тепловом контакте между ними. Теплообмен может происходить и между частями тела: от более нагретой части к его менее нагретой без переноса частиц, составляющих тело.

Конвекция — перенос теплоты потоками движущихся жидкости или газа из одних областей занимаемого ими объема в другие. При нагревании чайника на плите теплопроводность обеспечивает поступление теплоты через дно чайника к нижним (пограничным) слоям воды, однако нагревание внутренних слоев воды как раз и есть результат конвекции, приводящей к перемешиванию нагретой и холодной воды.

Тепловое излучение — перенос теплоты посредством электромагнитных волн. При этом отсутствует механический контакт нагревателя и получателя теплоты. Например, при поднесении руки на небольшое расстояние к лампе накаливания Вы почувствуете ее тепловое излучение. Земля получает энергию от Солнца также за счет теплового излучения.

Поскольку внутренняя энергия U однозначно определяется термодинамическими параметрами системы, то она является функцией состояния. Соответственно, изменение внутренней энергии ΔU при изменении состояния системы (изменение температуры, объема, давления, переход из жидкого состояния в твердое и т. д.) может быть найдено по формуле

ΔU=U2- U1

где U1 и U2 — внутренняя энергия в первом и во втором состояниях. Изменение внутренней энергии ΔU не зависит от промежуточных состояний системы в процессе такого перехода, а определяется только начальным и конечным значениями энергии.

Первое начало термодинамики. Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и на совершение работы над внешними телами:

Q = Δ U + A.

В изохорном процессе газ работы не совершает, и Δ U = Q. В изобарном процессе A = p Δ V = p (V 2V 1). В изотермическом процессе Δ U = 0, и A = Q; вся теплота, переданная телу, идет на работу над внешними телами. Графически работа равна площади под кривой процесса на плоскости p, V.

Рис. 3. Первое начало термодинамики для изохорного процесса

 

Рис. 4. Первое начало термодинамики для изобарного процесса

 

Рис. 5. Первое начало термодинамики для изотермического процесса

 

Рис. 6. Первое начало термодинамики для адиабатного процесса

Адиабатным называется квазистатический процесс, при котором системе не передается тепло из окружающей среды: Q = 0. В адиабатном процессе вся работа совершается за счет внутренней энергии газа.

28. Среди равновесных процессов, которые происходят с термодинамическими системами, отдельно рассматриваются изопроцессы, при которых один из основных параметров состояния остается постоянным.

Изохорный процесс (V=const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис. 1), где процесс 1—2 есть изохорное нагревание, а 1—3 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.

Из первого начала термодинамики (δQ=dU+δA) для изохорного процесса следует, что вся теплота, которая сообщается газу, идет на увеличение его внутренней энергии:

т.к. CV=dUm/dt,

Тогда для произвольной массы газа получим

(1)

Изобарный процесс (p=const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, которая параллельна оси V. При изобарном процессе работа газа при увеличения объема от V1 до V2 равна

(2)

и равна площади заштрихованного прямоугольника (рис. 2). Если использовать уравнение Менделеева-Клапейрона для выбранных нами двух состояний, то

и

откуда

Тогда выражение (2) для работы изобарного расширения примет вид

(3)

Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2 —T1 = 1К, то для 1 моль газа R=A, т. е. R численно равна работе изобарного расширения 1 моль идеального газа при нагревании его на 1 К.


 

Рис.1

 

В изобарном процессе при сообщении газу массой m количества теплоты

его внутренняя энергия возрастает на величину (т.к. CV=dUm/dt)

При этом газ совершит работу, определяемую выражением (3).

Изотермический процесс (T=const). Изотермический процесс описывается законом Бойля—Мариотта:

Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу, которая расположена на диаграмме тем выше, чем выше температура, при которой происходит процесс.

Исходя из формул для работы газа и уравнения Менделеева-Клайперона найдем работу изотермического расширения газа:

Так как при Т=const внутренняя энергия идеального газа не изменяется:

то из первого начала термодинамики (δQ=dU+δA) следует, что для изотермического процесса

т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:

(4)

Значит, для того чтобы при расширении газа температура не становилась меньше, к газу в течение изотермического процесса необходимо подводить количество теплоты, равное внешней работе расширения.

29. В термодинамике[править | править вики-текст]

Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при замкнутых обратимых процессах, тогда как в необратимых — её изменение всегда положительно.

Математически энтропия определяется как функция состояния системы, равная в равновесном процессе количеству теплоты, сообщённой системе или отведённой от системы, отнесённому к термодинамической температуре системы:

,

где — приращение энтропии; — минимальная теплота, подведённая к системе; — абсолютная температура процесса.

Энтропия устанавливает связь между макро- и микро- состояниями. Особенность данной характеристики заключается в том, что это единственная функция в физике, которая показывает направленность процессов. Поскольку энтропия является функцией состояния, то она не зависит от того, как осуществлён переход из одного состояния системы в другое, а определяется только начальным и конечным состояниями системы.

Второе начало термодинамики

Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему

Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара

Третье начало термодинамики может быть сформулировано так:

Приращение энтропии (как на меру беспорядка в системе) при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система.

Тепловые двигатели и холодильные машины

Тепловой двигатель - это периодически действующий двигатель, совершающий работу за счет полученной извне теплоты.

Термостатом называется термодинамическая система, которая может обмениваться теплотой с телами практически без изменения собственной температуры.

Рабочее тело - это тело, совершающее круговой процесс и обменивающееся энергией с другими телами.

Принцип работы теплового двигателя: от термостата с более высокой температурой T1, называемого нагревателем, за цикл отнимается количество теплоты Q1, а термостату с более низкой температурой T2, называемому холодильником, за цикл передается количество теплоты Q2. При этом совершается работа A=Q1-Q2 (рис. 18).

 


Рис 18. Схема теплового двигателя и холодильной машины

 

Термический КПД двигателя:

 

η=A/Q1=(Q1-Q2)/Q1=1-(Q2-Q1)

 

Чтобы КПД был равен 1, необходимо, чтобы Q2=0, а это запрещено вторым началом термодинамики.

Процесс, обратный происходящему в тепловом двигателе, используется в холодильной машине: от термостата с более низкой температурой T2 за цикл отнимается количество теплоты Q2 и отдается термостату с более высокой температурой T1. При этом Q=Q1-Q2=A или Q1=Q2+A.

Количество теплоты Q1, отданное системой термостату T1, больше количества теплоты Q2, полученного от термостата T2, на величину работы, совершенной над системой.

Эффективность холодильной машины характеризует холодильный коэффициент η' - отношение отнятой от термостата с более низкой температурой количества теплоты Q2 к работе A, которая затрачивается на приведение холодильной машины в действие:

 

η'=Q2/A=Q2/(Q1-Q2). (69)

Коэффицие́нт поле́зного де́йствия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта»)[1]. КПД является безразмерной величиной и часто измеряется в процентах.

Определение

Коэффициент полезного действия

Математически определение КПД может быть записано в виде:

где А — полезная работа (энергия), а Q — затраченная энергия.

Если КПД выражается в процентах, то он вычисляется по формуле:

В силу закона сохранения энергии и в результате неустранимых потерь энергии КПД реальных систем всегда меньше единицы, то есть невозможно получить полезнойработы больше или столько, сколько затрачено энергии.

КПД теплово́го дви́гателя — отношение совершённой полезной работы двигателя, к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле

,

где — количество теплоты, полученное от нагревателя, — количество теплоты, отданное холодильнику. Наибольшим КПД среди циклических машин, оперирующих при заданных температурах нагревателя T 1 и холодильника T 2, обладают тепловые двигатели, работающие по циклу Карно; этот предельный КПД равен

.

 

30. Уравнение состояния[править | править вики-текст]

Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.

Для одного моля газа Ван-дер-Ваальса оно имеет вид:

где

· — давление,

· — молярный объём,

· — абсолютная температура,

· — универсальная газовая постоянная.

Видно, что это уравнение фактически является уравнением состояния идеального газа с двумя поправками. Поправка учитывает силы притяжения между молекулами (давление на стенку уменьшается, так как есть силы, втягивающие молекулы приграничного слоя внутрь), поправка — объем молекул газа.

Для молей газа Ван-дер-Ваальса уравнение состояния выглядит так:

где

· — объём.

Уравнение Дитеричи — уравнение состояния, связывающее основные термодинамические величины в газе. Используется наряду с более распространенным уравнением Ван-дер-Ваальсадля описания реальных газов, в которых частицы имеют конечные размеры и взаимодействуют друг с другом.

Предложил и теоретически обосновал Конрад Дитеричи (нем. Conrad Dieterici) (1858—1929).

Встречается в двух различных вариантах:

или

для одного моля газа, где

· — давление,

· — молярный объём,

· — абсолютная температура,

· — универсальная газовая постоянная,

· — постоянная (разная для разных веществ), характеризующая взаимное притяжение молекул,

· — постоянная (разная для разных веществ), связанная с размерами молекул, характеризующая взаимное отталкивание молекул.

Оба уравнения являются полуэмпирическими. Они переходят в уравнение состояния идеального газа в пределе больших молярных объёмов.

Первое уравнение Дитеричи для умеренных давлений значительно лучше уравнения Ван-дер-Ваальса, но зато совершенно непригодно для больших давлений.

Уравнение Бертло́ — двухпараметрическое уравнение состояния реального газа, опубликованное[1] Д. Бертло (фр. Daniel Berthelot) в 1899 году как модификацияуравнения Ван-дер-Ваальса.

Уравнение может быть записано в виде:

.

В критических точках можно считать, что , і ,

что приводит[2][3] к значениям коэффициентов a и b:

при заданном критическом коэффициенте сжимаемости газа

где p — давление, T< — температура и R — универсальная газовая постоянная. Tc' — критическая температура, pc — давление и Vc — объём в критической точке.

Д.Бертло, также предложил уравнение состояния для низких давлений:

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: