Исполнительные устройства




Электрические датчики

 

Датчики (в литературе часто называемые также измерительными преобразователями), или по-другому, сенсоры являются элементами многих систем автоматики - с их помощью получают информацию о параметрах контролируемой системы или устройства.

Датчик – это элемент измерительного, сигнального, регулирующего или управляющего устройства, преобразующий контролируемую величину (температуру, давление, частоту, силу света, электрическое напряжение, ток и т.д.) в сигнал, удобный для измерения, передачи, хранения, обработки, регистрации, а иногда и для воздействия им на управляемые процессы. Или проще, датчик – это устройство, преобразующее входное воздействие любой физической величины в сигнал, удобный для дальнейшего использования.

Используемые датчики весьма разнообразны и могут быть классифицированы по различным признакам:

В зависимости от вида входной (измеряемой) величины различают: датчики механических перемещений (линейных и угловых), пневматические, электрические, расходомеры, датчики скорости, ускорения, усилия, температуры, давления и др.

В настоящее время существует приблизительно следующее распределение доли измерений различных физических величин в промышленности: температура – 50%, расход (массовый и объемный) – 15%, давление – 10%, уровень – 5%, количество (масса, объем) – 5%, время – 4%, электрические и магнитные величины – менее 4%.

По виду выходной величины, в которую преобразуется входная величина, различают неэлектрические и электрические: датчики постоянного тока (ЭДС или напряжения), датчики амплитуды переменного тока (ЭДС или напряжения), датчики частоты переменного тока (ЭДС или напряжения), датчики сопротивления (активного, индуктивного или емкостного) и др.

Большинство датчиков являются электрическими. Это обусловлено следующими достоинствами электрических измерений:

- электрические величины удобно передавать на расстояние, причем передача осуществляется с высокой скоростью;

- электрические величины универсальны в том смысле, что любые другие величины могут быть преобразованы в электрические и наоборот;

- они точно преобразуются в цифровой код и позволяют достигнуть высокой точности, чувствительности и быстродействия средств измерений.

По принципу действия датчики можно разделить на два класса: генераторные и параметрические (датчики-модуляторы). Генераторные датчики осуществляют непосредственное преобразование входной величины в электрический сигнал.

Параметрические датчики входную величину преобразуют в изменение какого-либо электрического параметра (R, L или C) датчика.

 

 

3.Переключающие устройства и распределители

 

Реле – это устройство, которое используется для измерения какого-либо воздействия.
Система любого реле состоит из обязательных воспринимающего, преобразующего, сравнивающего, исполнительного и регулирующего элементов.
Воспринимающий и преобразующий элементы выполняют функции реагирования на один из параметров тока и последующего его преобразования в механическую силу, которая используется в дальнейшей его работе. Таким образом, воспринимающий и преобразующий элементы представляют собой механизм, который преобразовывает электрическую энергию в механическую, и является двигательным органом.
Сравнивающий элемент реле получает механическую силу и выполняет функцию его сравнения с заданным значением. В случае какого-либо отклонения от нормы, сравнивающий элемент вызывает команду на срабатывание.
Следующий элемент системы реле – исполнительный – выполняет функцию ответа на срабатывание. При этом происходит воздействие его на управляемую цепь путём изменения её параметров. То есть с помощью исполнительного элемента происходит соединение или разъединение нескольких проводников электрической цепи. К исполнительному элементу можно отнести калориферы.
Регулирующий элемент служит для настройки выключателя.
Различают несколько видов контактов: замыкающие, размыкающие и переключающие. Условия выбора вида контактов определяются в основном напряжением в сети, мощностью и характером работы, частотой включений и выключений системы
Существует несколько видов реле: электрические, механические, тепловые, реле рвп и т.д. Все эти виды имеют свои особенности работы, а именно время срабатывания и возврата, а также параметры срабатывания и возврата.
Параметр срабатывания – это минимальное значение, которое должен принять входной сигнал, чтобы произошло начало работы реле. Параметр возврата - это, соответственно, максимальное значение, которое должен принять входной сигнал, чтобы реле прекратило свою работу.
Время срабатывания – это промежуток времени от момента подачи сигнала до момента перехода сигнала в управляющую цепь. Время возврата – это промежуток времени от момента снятия сигнала до полного прекращения действия сигнала на систему.
Большое значение имеет рабочий параметр и срок службы. Рабочий параметр – это значение входного сигнала, при котором обеспечивается нормальная его работа. Срок службы – это максимальное количество срабатываний реле, которое предполагает его нормальную работу.

 

Исполнительные устройства


Исполнительные устройства предназначены для преобразования управляющих (командных) сигналов в регулирующие воздействия на объект управления. Практически все виды воздействий сводятся к механическому, т. е. к изменению величины перемещения, усилия к скорости возвратно-поступательного или вращательного движения. Исполнительные устройства являются последним звеном цепи автоматического регулирования и в общем случае состоят из блоков усиления, исполнительного механизма, регулирующего и дополнительных (обратной связи, сигнализации конечных положений и т. п.) органов. В зависимости от условий применения рассматриваемые устройства могут существенно различаться между собой. К основным блокам исполнительных устройств относят исполнительные механизмы и регулирующие органы.

Исполнительные механизмы классифицируют по ряду признаков: – по виду используемой энергии — электрические, пневматические, гидравлические и комбинированные; – по конструктивному исполнению — мембранные
и поршневые; – по характеру обратной связи — периодического и
непрерывного действия.

Электрические исполнительные механизмы являются наиболее распространенными и включают в себя электродвигатели и электромагнитный привод. В общем случае эти механизмы состоят из электродвигателя, редуктора, тормоза, соединительных муфт, контрольно-пусковой аппаратуры и специальных устройств для перемещения рабочих органов.

Рис. 10.21. Пропорциональный исполнительный механизм

Пропорциональный исполнительный механизм (рис. 10.21) по конструкции похож на двухпозиционный двигатель. Однако возможность пропорционального регулирования достигается установкой на одном валу двух электродвигателей. Первый вращает вал в одном направлении, второй — в противоположном. Кроме того, исполнительный механизм включает в себя редуктор, муфту и зубчатую рейку. Пропорциональное регулирование (например, газового вентиля в дорожных ремонтерах) обеспечивается потенциометром, используемым для создания обратной связи в схеме.

Электродвигательные исполнительные механизмы применяют в основном при усилии не более 53 кН.

 

Рис. 10.22. Электромагнитный управляющий элемент

 

Рис. 10.23. Электромашинный толкатель

Электромагнитный привод используется для управления механизмами в гидро- и пневмоприводах, а также различными вентилями и заслонками. Принцип работы этого привода (рис. 10.22) состоит в поступательном перемещении на величину L металлического якоря относительно электромагнитного вала катушки, расположенной в корпусе. Различают электромагнитные приводы одно- и двустороннего действия. В первом исполнении возврат якоря в исходное положение производится с помощью пружины, во втором — изменением направления управляющего сигнала. По типу приложения нагрузки привод бывает периодического и непрерывного действия. С его помощью осуществляется релейное (открыто — закрыто) и линейное управление.

Так как принцип действия этих двух видов механизмов схож между собой, рассмотрим их совместно.

К самостоятельным механизмам относят цилиндры с поршнем и штоком одно- и двустороннего действия (см. гл. 1).

Исполнительные механизмы, объединенные с усилителями, имеют различные конструктивные решения, часть из которых рассмотрим ниже.

Основным в таком приводе является регулирование скорости движения штока, выполняемое с дроссельным или объемным регулированием.

При управлении с дроссельным регулированием используют золотниковые распределители или «сопло-заслонку». Работа гидропривода с дроссельным регулированием позволяет изменять величину перекрытия отверстий (т. е. дросселировать), через которые жидкость попадает в рабочий цилиндр (рис. 10.24, а). Перемещение золотниковой пары вправо позволяет маслу из напорной линии через канал попасть в полость А рабочего цилиндра и поршень будет перемещаться вправо. При этом масло, находящееся в полости Б, будет сливаться через канал в бак. Перемещение золотника влево переместит в ту же сторону и поршень, а отработавшее масло будет сливаться из полости А в бак через канал. При расположении золотниковой пары в среднем положении (так, как показано на рисунке) оба канала, соединяющих золотниковое устройство с рабочим цилиндром, перекрыты и поршень неподвижен.

 

ЛОГИЧЕСКИЕ СХЕМЫ

Перевод

ЛОГИЧЕСКИЕ СХЕМЫ

- физ. устройства, реализующие функции матем. логики. Л. с. подразделяют на 2 класса: комбинационные схемы (Л. с. без памяти) и послед овател ьностные схемы (Л. с. с памятью). Л. с. являются основой любых систем (различных назначений и физ. природы) обработки дискретной информации. Л. с. может быть представлена в виде многополюсника (рис. 1), на к-рый поступает п входных сигналов и с к-рого снимается т выходных сигналов. При этом как независимые (логические) переменные Х 1,......, Х n, так и ф-ции Y1,..., Y n, также наз. логическими, могут принимать к.-л. значения только из одного и того же конечного множества значений.

Наиб. распространены т. н. двоичные Л. с., для к-рых всё множество сигналов ограничено двумя значениями, отмечаемыми символами 1 и 0 и подчиняющимися условию: a =1, если и а =0, если Для представления чисел с помощью двоичных переменных 0 и 1 чаще всего применяют т. н. позиционный двоичный код, в к-ром разряды двоичного числа расставлены по степеням числа 2:

 

Логические элементы. Л. с., выполняющая одну из элементарных логич. операций, наз. логич. элементом (ЛЭ). ЛЭ имеет один или неск. входов, на к-рые поступают сигналы X i, и один выход. При этом выходной сигнал Y элемента не должен оказывать обратного воздействия на входной сигнал

Суммирование по модулю два (строка У 6 в табл. 1) можно собрать схему, состоящую из 5 элементов, выполняющих операции НЕ, ИЛИ и И (рис. 3). К ЛЭ предъявляется комплекс требований, нередко имеющих взаимоисключающий характер, напр. большое быстродействие и малое энергопотребление, высокая надёжность и низкая себестоимость, небольшие габариты и масса и высокая технологичность произ-ва. Из всех возможных разновидностей ЛЭ (электромеха-нич., пневматич., электронных, оптич. и т. п.) совокупности всех требований наилучшим образом удовлетворяют полупроводниковые элементы, т. н. логич. (цифровые) полупроводниковые интегр. микросхемы, ИМС (см. Цифровые устройства, [2]). Простейшим ЛЭ является инвертор, к-рый может быть реализован на однотранзисторном усилит. каскаде, работающем в режиме электронного ключа (рис. 4, а). Если на вход этого усилителя подать достаточно высокое положит. напряжение (логич. сигнал 1), тотранзистор откроется и напряжение на его выходе упадёт (логич. сигнал 0). И наоборот, при низком уровне входного сигнала транзистор будет заперт и напряжение на его выходе будет максимальным (логич. сигнал 1). Простейший элемент типа И-НЕ (рис. 4, б)получится при добавлении к инвертору на транзисторе входной логич. схемы И на многоэмиттерном транзисторе Т 1. (см. Транзистор биполярный). Если на все входы транзистора Т 1. поданы сигналы высокого уровня, то соответствующие базовые переходы Т 1. будут закрыты. Тогда ток, протекающий через резистор R 1 и два последовательно включённых перехода транзисторов Т 1. (база - коллектор) и Т 2 (база-эмиттер), открывает выходный транзистор Т 2. Если же на один или несколько входов X i подано низкое напряжение (логич. 0), то открываются соответствующие переходы эмиттер-база транзистора Т 1. При этом практически весь ток, текущий через R 1 пойдёт через открытый эмиттерный переход, т. к. его сопротивление значительно меньше сопротивления двух последовательно включённых переходов, и транзистор Т 2 окажется запертым. Широкое применение находят и др. типы ИМС. Это вызвано тем, что схемные и технологич. особенности определяют, как минимум, 2 самых важных параметра логич. микросхем: быстродействие и потребляемую мощность (для совр. ЛЭ в интегр. исполнении время переключения из одного состояния в др., т, е. быстродействие ЛЭ, составляет от 50 до 0,2 нc при потребляемой мощности от 0,001 до 40 мВт). Эти параметры противоречивы, и в рамках одной технологии при улучшении одного неизбежно ухудшается другой, в связи с чем общее число типов ИМС, имеющих разл. сочетание осн. параметров и выполненных по разным технологиям, непрерывно расширяется.

 

 

МАГНИТНЫЙ УСИЛИТЕЛЬ

Магнитные усилители широко применяются на отечественных тепловозах в системах регулирования мощности дизель-генераторов и в других устройствах автоматики.
Работа магнитных усилителей основана на использовании законов прохождения переменного тока в электрических цепях и физических свойств ферромагнитных материалов. Магнитный усилитель имеет сердечник, на который надеты катушки обмоток (рис. 222).

Рис. 222 Схема магнитного усилителя

Сердечник изготавливают из электротехнической стали или других ферромагнитных материалов, например из пермаллоя. Катушки Р1 и Р2 рабочей обмотки усилителя включены в цепь переменного тока. В обмотку управления У1 подводится постоянный ток. Рабочая обмотка магнитного усилителя представляет собой индуктивное сопротивление.
При описании возбудителей с расщепленными полюсами подробно рассматривался процесс намагничивания ферромагнитных сердечников. Если вначале с увеличением магнитодвижущей силы пропорционально ей возрастают магнитный поток и магнитная индукция, то при наступлении магнитного насыщения материала сердечника практически прекращается изменение магнитной индукции, как бы ни увеличивали мы магнитодвижущую силу за счет повышения величины тока в обмотке. Явление магнитного насыщения ферромагнитных материалов использовано в магнитном усилителе.
Вследствие большого индуктивного сопротивления рабочей обмотки при отсутствии тока в обмотке управления сила тока в цепи рабочей обмотки будет весьма невелика. Если по обмотке управления пропустить постоянный ток и довести сердечник до магнитного насыщения, то переменный ток рабочих обмоток уже не будет создавать дополнительного изменяющегося магнитного потока. Индуктивное сопротивление рабочих обмоток резко снизится, и в соответствии с законом Ома ток, протекающий по этим обмоткам, значительно увеличится. При постепенном увеличении тока в обмотке управления также постепенно снижается переменный магнитный поток, создаваемый рабочими обмотками, и нарастает ток в цепи этих обмоток.
В магнитных усилителях устанавливаются две катушки Р1 и Р2 рабочей обмотки (см. рис. 222). Ими создаются согласные по направлению магнитные потоки, замыкающиеся во внешнем кольце магнитопровода усилителя. В среднем стержне с обмоткой управления магнитные потоки рабочих обмоток имеют противоположное направление, взаимокомпенсируются и не индуктируют э. д. с. в обмотке управления. Появление трансформаторной э. д. с. в управляющей обмотке могло бы привести к нарушению работы цепей управления.
Обмотка управления потребляет небольшую мощность. Благодаря этому с помощью небольшого тока, затрачивая незначительную мощность, можно регулировать в широких пределах достаточно большую по величине мощность нагрузки. Отсюда такие аппараты получили свое наименование усилителей.
Магнитный усилитель можно рассматривать и как регулируемый резистор в цепи переменного тока, изменение сопротивления которого производится с помощью управляющего постоянного тока.
Нагрузка Rн т. е. объект, в котором ток регулируется с помощью магнитного усилителя, включается в цепь рабочих обмоток. Нагрузкой магнитных усилителей часто являются обмотки возбуждения генераторов. Чтобы через нагрузку проходил постоянный, а не переменный ток, в цепь включается выпрямительный мост В.
Отношение тока нагрузки к току в обмотке управления называют коэффициентом усиления магнитного усилителя по току, а отношение мощностей нагрузки и управления — коэффициентом усиления по мощности. Коэффициенты усиления обычных магнитных усилителей обычно лежат в пределах от 50 до 200.
Увеличения коэффициентов усиления магнитных усилителей достигают применением обратной связи. Схемы таких усилителей показаны на рис. 223.

Рис. 223. Схемы магнитных усилителей с обратными связями: а) внешней; б)внутренней

 

Автоматика Защиты

 

Автоматический выключатель

 

еханический) (МЭС 441-14-20), «автомат» — это механический коммутационный аппарат, способный включать, проводить и отключать токи при нормальном состоянии цепи, а также включать, проводить в течение заданного времени и автоматически отключать токи в указанном аномальном состоянии цепи

Автомат защиты линии был изобретён американским учёным в 1836 году. Первую конструкцию автоматического выключателя описал Эдисон в 1879 году, в то время как его коммерческая система электроснабжения использовала плавкие предохранители. Конструкция современных автоматических выключателей была запатентована швейцарской компанией Brown, Boveri & Cie в 1924 году.

Роль в электрической цепи[

Отличие рубильника от автомата

Автоматические выключатели предназначены для многоразовой защиты электрических установок от перегрузок и коротких замыканий, то есть управляться токами короткого замыкания и перегрузки. Некоторые модели обеспечивают защиту от других аномальных состояний, например, от недопустимого снижения напряжения.


Нередко можно встретить ошибочное использование автомата защиты линии в качестве вводного выключателя нагрузки. Для того, чтобы исключить ошибочное включение при наличии аварии в цепи, автомат имеет механическую защиту (смотри иллюстрацию), разрывающую связь между ручным приводом и контактами (чаще всего роль такой защиты выполняет отсутствие жёсткой фиксации между ручным приводом и контактами) - из-за наличия этой защиты контакты могут не разомкнуться при переводе ручного привода в положение "выключено" и на обслуживаемом участке остаться опасное напряжение. Так же защита от аварий должна осуществляться на протяжении всей линии, а не в конце - по этой причине автомат защиты устанавливается в начале линии, где он будет защищать всю линию целиком по своему прямому назначению.

Главным отличием от плавкого предохранителя является возможность многократного использования.

Устройство[править]

Внутреннее устройство автоматического выключателя ВА47-29

Внутреннее устройство OptiDin ВМ63

Автоматический выключатель конструктивно выполнен в диэлектрическом корпусе. Автоматический выключатель, рассчитанный на небольшие токи, часто имеет крепление для монтажа на DIN-рейку. Включение-отключение производится рычажком (1 на рисунке), провода подсоединяются к винтовым клеммам (2). Защелка (9) фиксирует корпус выключателя на DIN-рейке и позволяет при необходимости легко его снять (для этого нужно оттянуть защелку, вставив отвертку в петлю защелки). Коммутацию цепи осуществляют подвижный (3) и неподвижный (4) контакты. Подвижный контакт подпружинен, пружина обеспечивает усилие для быстрого расцепления контактов. Механизм расцепления приводится в действие одним из двух расцепителей: тепловым или магнитным.

  • Тепловой расцепитель представляет собой биметаллическую пластину (5), нагреваемую протекающим током. При протекании тока выше допустимого значения биметаллическая пластина изгибается и приводит в действие механизм расцепления. Время срабатывания зависит от тока (времятоковая характеристика) и может изменяться от секунд до часа. Минимальный ток, при котором должен срабатывать[2] тепловой расцепитель, составляет 1,45 от номинального тока автомата. Настройка тока срабатывания производится в процессе изготовления регулировочным винтом (6). В отличие от плавкого предохранителя, автоматический выключатель готов к следующему использованию после остывания пластины.
  • Электромагнитный расцепитель (отсечка) - расцепитель мгновенного действия, представляет собой соленоид (7), подвижный сердечник которого также может приводить в действие механизм расцепления. Ток, проходящий через выключатель, течет по обмотке соленоида и вызывает втягивание сердечника при превышении заданного порога тока. Мгновенный расцепитель, в отличие от теплового, срабатывает очень быстро (доли секунды), но при значительно большем превышении тока: в 2÷10 раз от номинала, в зависимости от типа (автоматические выключатели делятся на типы (классы) B, C и D в зависимости от чувствительности мгновенного расцепителя).

Во время расцепления контактов может возникнуть электрическая дуга, поэтому контакты имеют особую форму и находятся рядом с дугогасительной решёткой (8).

Классификация[править]

ГОСТ[править]

ГОСТ 9098-78 — устанавливает следующую классификацию автоматических выключателей

1. По роду тока главной цепи: постоянного тока; переменного тока; постоянного и переменного тока.

Номинальные токи главных цепей выключателей, предназначенных для работы при температуре окружающего воздуха 40 °C, должны соответствовать ГОСТ 6827. Номинальные токи для главных цепей выключателя выбирают из ряда: 6,3; 10; 16; 20; 25; 32; 40; 63; 100; 160; 250; 400; 630; 1 000; 1 600; 2 500; 4 000; 6 300 А. Дополнительно могут выпускаться выключатели на номинальные токи главных цепей выключателей: 1 500; 3 000; 3 200 А.

Номинальные токи максимальных расцепителей тока выключателей, предназначенных для работы при температуре окружающего воздуха 40 °C, должны соответствовать ГОСТ 6827. Допускаются номинальные токи максимальных расцепителей тока: 15; 45; 120; 150; 300; 320; 600; 1 200; 1 500; 3 000; 3 200 А

2. По конструкции: воздушный автоматический выключатель (англ. Air Circuit Breaker, сокращенно АСВ) от 800 А до 6 300 А, выключатель в литом корпусе (англ. МССВ) от 10 А до 2500 А, модульные автоматические выключатели (англ. МСВ) от 0,5 А до 125 А.

3. По числу полюсов главной цепи: однополюсные; двухполюсные; трехполюсные; четырёхполюсные.

4. По наличию токоограничения: токоограничивающие; нетокоограничивающие.

5. По видам расцепителей: с максимальным расцепителем тока; с независимым расцепителем; с минимальным или нулевым расцепителем напряжения.

6. По характеристике выдержки времени максимальных расцепителей тока: без выдержки времени; с выдержкой времени, независимой от тока; с выдержкой времени, обратно зависимой от тока; с сочетанием указанных характеристик.

7. По наличию свободных контактов («блок-контактов» для вторичных цепей): с контактами; без контактов.

8. По способу присоединения внешних проводников: с задним присоединением; с передним присоединением; с комбинированным присоединением (верхние зажимы с задним присоединением, а нижние — с передним присоединением или наоборот); с универсальным присоединением (передним и задним).

9. По виду привода: с ручным; с двигательным; с пружинным.

10. По наличию и степени защиты выключателя от воздействия окружающей среды и от соприкосновения с находящимися под напряжением частями выключателя и его движущимися частями, расположенными внутри оболочки в соответствии с требованиями ГОСТ 14255.

Отключение[править]

Отключение может происходить без выдержки времени или с выдержкой. По собственному времени отключения tс, о (промежуток от момента, когда контролируемый параметр превзошёл установленное для него значение, до момента начала расхождения контактов) различают нормальные выключатели (tс, о = 0,02-1 с), выключатели с выдержкой времени (селективные) и быстродействующие выключатели (tс, о < 0,005 с).

Нормальные и селективные автоматические выключатели токоограничивающим действием не обладают. Быстродействующие выключатели, так же как предохранители, обладают токоограничивающим действием, так как отключают цепь до того, как ток в ней достигнет значения Іу.

Селективные автоматические выключатели позволяют осуществить селективную защиту сетей путём установки автоматических выключателей с разными выдержками времени: наименьшей у потребителя и ступенчато возрастающей к источнику питания.

Характеристики[править]

Ток мгновенного расцепления[править]

Согласно ГОСТ Р 50345-2010, автоматические выключатели делятся на следующие типы (классы) по току мгновенного расцепления:

Диаграмма отключения модульных автоматических выключателей разных производителей (закрашена область токов мгновенного расцепления)

  • тип B: свыше 3· In до 5· In включительно (где In — номинальный ток)
  • тип C: свыше 5· In до 10· In включительно
  • тип D: свыше 10· In до 20· In включительно

У европейских производителей классификация может несколько отличаться. В частности, имеется дополнительный тип A (свыше 2· In до 3· In). У отдельных производителей существуют дополнительные кривые отключения. Например, у АВВ имеются автоматические выключатели с кривыми K (8 - 14· In) и Z (2 - 4· In), соответствующие стандарту МЭК 60947-2.

Биметаллическая пластина[править]

Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.  

Биметаллическая пластина представляет собой ленту из двух металлических полос с разными коэффициентами теплового расширения. В автоматическом выключателе она выполняет роль теплового расцепителя. Две полосы не сплавлены между собой и обычно скреплены с одного конца пайкой или сваркой. Другие концы закреплены неподвижно. Биметаллическая пластина включена в цепь последовательно с нагрузкой. В результате её нагревания электрическим током пластина изгибается в сторону металла с меньшим коэффициентом линейного расширения. В случае перегрузки изгиб пластины обеспечивает отключение автоматического выключателя.[3]

Варианты исполнения[править]

автомат защиты в литом корпусе

Автоматические выключатели выполняются одно-, двух-, трёх- или четырёхполюсными и имеют следующие конструктивные узлы: главной контактной системы, дугогасительной системы, привода, расцепляющего устройства, расцепителей и вспомогательных контактов.

Контактная система может быть трёхступенчатой (с главными, промежуточными и дугогасительными контактами), двухступенчатой (с главными и дугогасительными контактами) и при использовании металлокерамики одноступенчатой. Дугогасительная система может состоять из камер с узкими щелями или из камер с дугогасительными решётками. Комбинированные дугогасительные устройства — щелевые камеры в сочетании с дугогасительной решеткой применяют для гашения дуги при больших токах.

Для каждого исполнения автоматического выключателя существует предельный ток короткого замыкания, который гарантированно не приводит к выходу из строя автомата. Превышение этого тока может вызвать подгорание или сваривание контактов. Например, у популярных серий бытовых автоматов при токе срабатывания 6-50 А предельный ток обычно составляет 1 000-10 000 А.

Автоматические выключатели изготовляют с ручным и двигательным приводом, в стационарном или выдвижном исполнении. Привод автоматического выключателя служит для включения, автоматического отключения и может быть ручным непосредственного действия и дистанционным (электромагнитным, пневматическим и др.).

Автоматические выключатели имеют реле прямого действия, называемые расцепителями.

Расцепители[править]

схемы подключения расцепителей

Расцепители — это электромагнитные или термобиметаллические элементы, служащие для отключения автоматического выключателя через механизм свободного расцепления при КЗ, перегрузках и исчезновении напряжения в первичной цепи. Механизм свободного расцепления состоит из рычагов, защелок, коромысел и отключающих пружин и предназначен для отключения автоматического выключателя, а также для устранения повторного включения автоматического выключателя на короткое замыкание при длительно существующей команде на включение.

Селективный автоматический выключатель (согласно DIN VDE 0641-21)[править]

В отдельную группу можно выделить селективные автоматические выключатели (англ. Selective Main Circuit Breaker), имеющие в соответствии с немецким стандартом DIN VDE 0641-21 особую функцию селективности и исполняющий её независимо от напряжения сети. Селективный автоматический выключатель полностью селективен нижестоящим модульным (миниатюрным) автоматическим выключателям.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: