Неопределенное число параметров




Существуют функции, в описании которых невозможно указать число и типы всех допустимых параметров. Тогда список формальных параметров завершается эллипсисом (...), что означает: "и, возможно, еще несколько аргументов". Например: int printf(const char*...); При вызове printf обязательно должен быть указан параметр типа char*, однако могут быть (а могут и не быть) еще другие параметры. Например: printf("Hello, world\n"); printf("My name is %s %s\n", first_name, second_name); printf("%d + %d = %d\n", 2,3,5); Такие функции пользуются для распознавания своих фактических параметров недоступной транслятору информацией. В случае функции printf первый параметр является строкой, специфицирующей формат вывода. Она может содержать специальные символы, которые позволяют правильно воспринять последующие параметры. Например, %s означает -"будет фактический параметр типа char*", %d означает -"будет фактический параметр типа int" (см. $$10.6). Но транслятор этого не знает, и поэтому он не может убедиться, что объявленные параметры действительно присутствуют в вызове и имеют соответствующие типы. Например, следующий вызов printf("My name is %s %s\n",2); нормально транслируется, но приведет (в лучшем случае) к неожиданной выдаче. Можете проверить сами. Очевидно, что раз параметр неописан, то транслятор не имеет сведений для контроля и стандартных преобразований типа этого параметра. Поэтому char или short передаются как int, а float как double, хотя пользователь, возможно, имел в виду другое. В хорошо продуманной программе может потребоваться, в виде исключения, лишь несколько функций, в которых указаны не все типы параметров. Чтобы обойти контроль типов параметров, лучше использовать перегрузку функций или стандартные значения параметров, чем параметры, типы которых не были описаны. Эллипсис становится необходимым только тогда, когда могут меняться не только типы, но и число параметров. Чаще всего эллипсис используется для определения интерфейса с библиотекой стандартных функций на С, если этим функциям нет замены: extern "C" int fprintf(FILE*, const char*...); extern "C" int execl(const char*...); Есть стандартный набор макроопределений, находящийся в <stdarg.h>, для выбора незаданных параметров этих функций. Рассмотрим функцию реакции на ошибку, первый параметр которой показывает степень тяжести ошибки. За ним может следовать произвольное число строк. Нужно составить сообщение об ошибке с учетом, что каждое слово из него передается как отдельная строка: extern void error(int...) extern char* itoa(int); main(int argc, char* argv[]) { switch (argc) { case 1: error(0,argv[0],(char*)0); break; case 2: error(0,argv[0],argv[1],(char*)0); break; default: error(1,argv[0], "With",itoa(argc-1),"arguments",(char*)0); } //... } Функция itoa возвращает строку символов, представляющую ее целый параметр. Функцию реакции на ошибку можно определить так: #include <stdarg.h> void error(int severity...) /* за "severity" (степень тяжести ошибки) следует список строк, завершающийся нулем */ { va_list ap; va_start(ap,severity); // начало параметров for (;;) { char* p = va_arg(ap,char*); if (p == 0) break; cerr << p << ' '; } va_end(ap); // очистка параметров cerr << '\n'; if (severity) exit(severity); } Вначале при вызове va_start() определяется и инициализируется va_list. Параметрами макроопределения va_start являются имя типа va_list и последний формальный параметр. Для выборки по порядку неописанных параметров используется макроопределение va_arg(). В каждом обращении к va_arg нужно задавать тип ожидаемого фактического параметра. В va_arg() предполагается, что параметр такого типа присутствует в вызове, но обычно нет возможности проверить это. Перед выходом из функции, в которой было обращение к va_start, необходимо вызвать va_end. Причина в том, что в va_start() могут быть такие операции со стеком, из-за которых корректный возврат из функции становится невозможным. В va_end() устраняются все нежелательные изменения стека. Приведение 0 к (char*)0 необходимо потому, что sizeof(int) не обязано совпадать с sizeof(char*). Этот пример демонстрирует все те сложности, с которыми приходится сталкиваться программисту, если он решил обойти контроль типов, используя эллипсис.

Указатель на функцию

Возможны только две операции с функциями: вызов и взятие адреса. Указатель, полученный с помощью последней операции, можно впоследствии использовать для вызова функции. Например: void error(char* p) { /*... */ } void (*efct)(char*); // указатель на функцию void f() { efct = &error; // efct настроен на функцию error (*efct)("error"); // вызов error через указатель efct } Для вызова функции с помощью указателя (efct в нашем примере) надо вначале применить операцию косвенности к указателю - *efct. Поскольку приоритет операции вызова () выше, чем приоритет косвенности *, нельзя писать просто *efct("error"). Это будет означать *(efct("error")), что является ошибкой. По той же причине скобки нужны и при описании указателя на функцию. Однако, писать просто efct("error") можно, т.к. транслятор понимает, что efct является указателем на функцию, и создает команды, делающие вызов нужной функции. Отметим, что формальные параметры в указателях на функцию описываются так же, как и в обычных функциях. При присваивании указателю на функцию требуется точное соответствие типа функции и типа присваиваемого значения. Например: void (*pf)(char*); // указатель на void(char*) void f1(char*); // void(char*); int f2(char*); // int(char*); void f3(int*); // void(int*); void f() { pf = &f1; // нормально pf = &f2; // ошибка: не тот тип возвращаемого // значения pf = &f3; // ошибка: не тот тип параметра (*pf)("asdf"); // нормально (*pf)(1); // ошибка: не тот тип параметра int i = (*pf)("qwer"); // ошибка: void присваивается int } Правила передачи параметров одинаковы и для обычного вызова, и для вызова с помощью указателя. Часто бывает удобнее обозначить тип указателя на функцию именем, чем все время использовать достаточно сложную запись. Например: typedef int (*SIG_TYP)(int); // из <signal.h> typedef void (SIG_ARG_TYP)(int); SIG_TYP signal(int, SIG_ARG_TYP); Также часто бывает полезен массив указателей на функции. Например, можно реализовать систему меню для редактора с вводом, управляемым мышью, используя массив указателей на функции, реализующие команды. Здесь нет возможности подробно описать такой редактор, но дадим самый общий его набросок: typedef void (*PF)(); PF edit_ops[] = { // команды редактора &cut, &paste, &snarf, &search }; PF file_ops[] = { // управление файлом &open, &reshape, &close, &write }; Далее надо определить и инициализировать указатели, с помощью которых будут запускаться функции, реализующие выбранные из меню команды. Выбор происходит нажатием клавиши мыши: PF* button2 = edit_ops; PF* button3 = file_ops; Для настоящей программы редактора надо определить большее число объектов, чтобы описать каждую позицию в меню. Например, необходимо где-то хранить строку, задающую текст, который будет выдаваться для каждой позиции. При работе с системой меню назначение клавиш мыши будет постоянно меняться. Частично эти изменения можно представить как изменения значений указателя, связанного с данной клавишей. Если пользователь выбрал позицию меню, которая определяется, например, как позиция 3 для клавиши 2, то соответствующая команда реализуется вызовом: (*button2[3])(); Чтобы полностью оценить мощность конструкции указатель на функцию, стоит попытаться написать программу без нее. Меню можно изменять в динамике, если добавлять новые функции в таблицу команд. Довольно просто создавать в динамике и новые меню. Указатели на функции помогают реализовать полиморфические подпрограммы, т.е. такие подпрограммы, которые можно применять к объектам различных типов: typedef int (*CFT)(void*,void*); void sort(void* base, unsigned n, unsigned int sz, CFT cmp) /* Сортировка вектора "base" из n элементов в возрастающем порядке; используется функция сравнения, на которую указывает cmp. Размер элементов равен "sz". Алгоритм очень неэффективный: сортировка пузырьковым методом */ { for (int i=0; i<n-1; i++) for (int j=n-1; i<j; j--) { char* pj = (char*)base+j*sz; // b[j] char* pj1 = pj - sz; // b[j-1] if ((*cmp)(pj,pj1) < 0) { // поменять местами b[j] и b[j-1] for (int k = 0; k<sz; k++) { char temp = pj[k]; pj[k] = pj1[k]; pj1[k] = temp; } } } } В подпрограмме sort неизвестен тип сортируемых объектов; известно только их число (размер массива), размер каждого элемента и функция, которая может сравнивать объекты. Мы выбрали для функции sort() такой же заголовок, как у qsort() - стандартной функции сортировки из библиотеки С. Эту функцию используют настоящие программы. Покажем, как с помощью sort() можно отсортировать таблицу с такой структурой: struct user { char* name; // имя char* id; // пароль int dept; // отдел }; typedef user* Puser; user heads[] = { "Ritchie D.M.", "dmr", 11271, "Sethi R.", "ravi", 11272, "SZYmanski T.G.", "tgs", 11273, "Schryer N.L.", "nls", 11274, "Schryer N.L.", "nls", 11275 "Kernighan B.W.", "bwk", 11276 }; void print_id(Puser v, int n) { for (int i=0; i<n; i++) cout << v[i].name << '\t' << v[i].id << '\t' << v[i].dept << '\n'; } Чтобы иметь возможность сортировать, нужно вначале определить подходящие функции сравнения. Функция сравнения должна возвращать отрицательное число, если ее первый параметр меньше второго, нуль, если они равны, и положительное число в противном случае: int cmp1(const void* p, const void* q) // сравнение строк, содержащих имена { return strcmp(Puser(p)->name, Puser(q)->name); } int cmp2(const void* p, const void* q) // сравнение номеров разделов { return Puser(p)->dept - Puser(q)->dept; } Следующая программа сортирует и печатает результат: int main() { sort(heads,6,sizeof(user), cmp1); print_id(heads,6); // в алфавитном порядке cout << "\n"; sort(heads,6,sizeof(user),cmp2); print_id(heads,6); // по номерам отделов } Допустима операция взятия адреса и для функции-подстановки, и для перегруженной функции ($$R.13.3). Отметим, что неявное преобразование указателя на что-то в указатель типа void* не выполняется для параметра функции, вызываемой через указатель на нее. Поэтому функцию int cmp3(const mytype*, const mytype*); нельзя использовать в качестве параметра для sort(). Поступив иначе, мы нарушаем заданное в описании условие, что cmp3() должна вызываться с параметрами типа mytype*. Если вы специально хотите нарушить это условие, то должны использовать явное преобразование типа.

Макросредства

Макросредства языка определяются в $$R.16. В С++ они играют гораздо меньшую роль, чем в С. Можно даже дать такой совет: используйте макроопределения только тогда, когда не можете без них обойтись. Вообще говоря, считается, что практически каждое появление макроимени является свидетельством некоторых недостатков языка, программы или программиста. Макросредства создают определенные трудности для работы служебных системных программ, поскольку они перерабатывают программный текст еще до трансляции. Поэтому, если ваша программа использует макросредства, то сервис, предоставляемый такими программами, как отладчик, профилировщик, программа перекрестных ссылок, будет для нее неполным. Если все-таки вы решите использовать макрокоманды, то вначале тщательно изучите описание препроцессора С++ в вашем справочном руководстве и не старайтесь быть слишком умным. Простое макроопределение имеет вид: #define имя остаток-строки В тексте программы лексема имя заменяется на остаток-строки. Например, объект = имя будет заменено на объект = остаток-строки Макроопределение может иметь параметры. Например: #define mac(a,b) argument1: a argument2: b В макровызове mac должны быть заданы две строки, представляющие параметры. При подстановке они заменят a и b в макроопределении mac(). Поэтому строка expanded = mac(foo bar, yuk yuk) при подстановке преобразуется в expanded = argument1: foo bar argument2: yuk yuk Макроимена нельзя перегружать. Рекурсивные макровызовы ставят перед препроцессором слишком сложную задачу: // ошибка: #define print(a,b) cout<<(a)<<(b) #define print(a,b,c) cout<<(a)<<(b)<<(c) // слишком сложно: #define fac(n) (n>1)?n*fac(n-1):1 Препроцессор работает со строками и практически ничего не знает о синтаксисе C++, типах языка и областях видимости. Транслятор имеет дело только с уже раскрытым макроопределением, поэтому ошибка в нем может диагностироваться уже после подстановки, а не при определении макроимени. В результате появляются довольно путанные сообщения об ошибках. Допустимы такие макроопределения: #define Case break;case #define forever for(;;) А вот совершенно излишние макроопределения: #define PI 3.141593 #define BEGIN { #define END } Следующие макроопределения могут привести к ошибкам: #define SQUARE(a) a*a #define INCR_xx (xx)++ #define DISP = 4 Чтобы убедиться в этом, достаточно попробовать сделать подстановку в таком примере: int xx = 0; // глобальный счетчик void f() { int xx = 0; // локальная переменная xx = SQUARE(xx+2); // xx = xx +2*xx+2; INCR_xx; // увеличивается локальная переменная xx if (a-DISP==b) { // a-=4==b //... } } При ссылке на глобальные имена в макроопределении используйте операциюразрешения области видимости ($$2.1.1), и всюду, где это возможно,заключайте имя параметра макроопределения в скобки. Например: #define MIN(a,b) (((a)<(b))?(a):(b)) Если макроопределение достаточно сложное, и требуется комментарийк нему, то разумнее написать комментарий вида /* */, посколькув реализации С++ может использоваться препроцессор С, который нераспознает комментарии вида //. Например: #define m2(a) something(a) /* глубокомысленный комментарий */ С помощью макросредств можно создать свой собственный язык,правда, скорее всего, он будет непонятен другим. Кроме того, препроцессорС предоставляет довольно слабые макросредства. Если ваша задачанетривиальна, вы, скорее всего, обнаружите, что решить ее с помощью этихсредств либо невозможно, либо чрезвычайно трудно. В качествеальтернативы традиционному использованию макросредств в язык введеныконструкции const, inline и шаблоны типов. Например: const int answer = 42; template<class T> inline T min(T a, T b) { return (a<b)?a:b; }

Упражнения

1. (*1) Составьте следующие описания: функция с параметрами типа указатель на символ и ссылка на целое, невозвращающая значения; указатель на такую функцию; функция с параметром, имеющим тип такого указателя; функция, возвращающая такой указатель. Напишите определение функции, у которой параметр и возвращаемое значение имеют тип такого указателя. Подсказка: используйте typedef.2. (*1) Как понимать следующее описание? Где оно может пригодиться? typedef int (rifii&) (int, int);3. (*1.5) Напишите программу, подобную той, что выдает "Hello, world". Она получает имя (name) как параметр командной строки и выдает "Hello, name". Измените программу так, чтобы она получала произвольное число имен и всем им выдавала свое приветствие: "Hello,...".4. (1.5) Напишите программу, которая, беря из командной строки произвольное число имен файлов, все эти файлы переписывает один за другим в cout. Поскольку в программе происходит конкатенация файлов, вы можете назвать ее cat от слова concatenation - конкатенация).5. (*2) Переведите небольшую программу с языка С на С++. Измените заголовочные файлы так, чтобы они содержали описание всех вызываемых функций и описание типов всех параметров. По возможности все команды #define замените конструкциями enum, const или inline. Удалите из файлов.c все описания внешних, а определения функций приведите к виду, соответствующему С++. Вызовы malloc() и free() замените операциями new и delete. Удалите ненужные операции приведения.6. (*2) Напишите функцию sort() ($$4.6.9), использующую более эффективный алгоритм сортировки.7. (*2) Посмотрите на определение структуры tnode в $$R.9.3. Напишите функцию, заносящую новые слова в дерево узлов tnode. Напишите функцию для вывода узлов дерева tnode. Напишите функцию, которая производит такой вывод в алфавитном порядке. Измените структуру tnode так, чтобы в ней содержался только указатель на слово произвольной длины, которое размещается с помощью new в свободной памяти. Измените функцию так, чтобы она работала с новой структурой tnode.8. (*1) Напишите функцию itoa(), которая использовалась в примере из $$4.6.8.9. (*2) Узнайте, какие стандартные заголовочные файлы есть в вашей системе. Поройтесь в каталогах /usr/include или /usr/include/CC (или в тех каталогах, где хранятся стандартные заголовочные файлы вашей системы). Прочитайте любой показавшийся интересным файл.10. (*2) Напишите функцию, которая будет переворачивать двумерный массив. (Первый элемент массива станет последним).11. (*2) Напишите шифрующую программу, которая читает символы из cin и пишет их в cout в зашифрованном виде. Можно использовать следующий простой метод шифрации: для символа s зашифрованное представление получается в результате операции s^key[i], где key - массив символов, передаваемый в командной строке. Символы из массива key используются в циклическом порядке, пока не будет прочитан весь входной поток. Первоначальный текст получается повторным применением той же операции с теми же элементами key. Если массив key не задан (или задана пустая строка), шифрация не происходит.12. (*3) Напишите программу, которая помогает дешифрировать текст, зашифрованный описанным выше способом, когда ключ (т.е. массив key) неизвестен. Подсказка: см. D Kahn "The Codebreakers", Macmillan, 1967, New York, стр. 207-213.13. (*3) Напишите функцию обработки ошибок, первый параметр который подобен форматирующей строке-параметру printf() и содержит форматы %s, %c и %d. За ним может следовать произвольное количество числовых параметров. Функцию printf() не используйте. Если смысл формата %s и других форматов вам неизвестен, обратитесь к $$10.6. Используйте <stdarg.h>.14. (*1) Какое имя вы выбрали бы для типов указателей на функции, которые определяются с помощью typedef?15. (*2) Исследуйте разные программы, чтобы получить представление о разных используемых на практике стилях именования. Как используются заглавные буквы? Как используется подчерк? В каких случаях используются такие имена, как i или x?16. (*1) Какие ошибки содержатся в следующих макроопределениях? #define PI = 3.141593; #define MAX(a,b) a>b?a:b #define fac(a) (a)*fac((a)-1)17. (*3) Напишите макропроцессор с простыми возможностями, как у препроцессора С. Текст читайте из cin, а результат записывайте в cout. Вначале реализуйте макроопределения без параметров. Подсказка: в программе калькулятора есть таблица имен и синтаксический анализатор, которыми можно воспользоваться.18. (*2) Напишите программу, извлекающую квадратный корень из двух (2) с помощью стандартной функции sqrt(), но не включайте в программу <math.h>. Сделайте это упражнение с помощью функции sqrt() на Фортране.19. (*2) Реализуйте функцию print() из $$4.6.7.

* ГЛАВА 5. КЛАССЫ

"Эти типы не абстрактные, они столь же реальны, как int и float" - Даг Макилрой В этой главе описываются возможности определения новых типов, для которых доступ к данным ограничен заданным множеством функций, осуществляющих его. Объясняется, как можно использовать члены структуры данных, как ее защищать, инициализировать и, наконец, уничтожать. В примерах приведены простые классы для управления таблицей имен, работы со стеком, множеством и реализации дискриминирующего (т.е. надежного) объединения. Следующие три главы завершают описание возможностей С++ для построения новых типов, и в них содержится больше интересных примеров.


Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: