Введение и краткий обзор




Любое понятие не существует изолированно, оно существует во взаимосвязи с другими понятиями, и мощность данного понятия во многом определяется наличием таких связей. Раз класс служит для представления понятий, встает вопрос, как представить взаимосвязь понятий. Понятие производного класса и поддерживающие его языковые средства служат для представления иерархических связей, иными словами, для выражения общности между классами. Например, понятия окружности и треугольника связаны между собой, так как оба они представляют еще понятие фигуры, т.е. содержат более общее понятие. Чтобы представлять в программе окружности и треугольники и при этом не упускать из вида, что они являются фигурами, надо явно определять классы окружность и треугольник так, чтобы было видно, что у них есть общий класс - фигура. В главе исследуется, что вытекает из этой простой идеи, которая по сути является основой того, что обычно называется объектно-ориентированным программированием. Глава состоит из шести разделов: $$6.2 с помощью серии небольших примеров вводится понятие производного класса, иерархии классов и виртуальных функций. $$6.3 вводится понятие чисто виртуальных функций и абстрактных классов, даны небольшие примеры их использования. $$6.4 производные классы показаны на законченном примере $$6.5 вводится понятие множественного наследования как возможность иметь для класса более одного прямого базового класса, описываются способы разрешения коллизий имен, возникающих при множественном наследовании. $$6.6 обсуждается механизм контроля доступа. $$6.7 приводятся некоторые приемы управления свободной памятью для производных классов. В последующих главах также будут приводиться примеры, использующие эти возможности языка.

Производные классы

Обсудим, как написать программу учета служащих некоторой фирмы. В ней может использоваться, например, такая структура данных: struct employee { // служащие char* name; // имя short age; // возраст short department; // отдел int salary; // оклад employee* next; //... }; Поле next нужно для связывания в список записей о служащих одного отдела (employee). Теперь попробуем определить структуру данных для управляющего (manager): struct manager { employee emp; // запись employee для управляющего employee* group; // подчиненный коллектив short level; //... }; Управляющий также является служащим, поэтому запись employee хранится в члене emp объекта manager. Для человека эта общность очевидна, но для транслятора член emp ничем не отличается от других членов класса. Указатель на структуру manager (manager*) не является указателем на employee (employee*), поэтому нельзя свободно использовать один вместо другого. В частности, без специальных действий нельзя объект manager включить в список объектов типа employee. Придется либо использовать явное приведение типа manager*, либо в список записей employee включить адрес члена emp. Оба решения некрасивы и могут быть достаточно запутанными. Правильное решение состоит в том, чтобы тип manager был типом employee с некоторой дополнительной информацией: struct manager: employee { employee* group; short level; //... }; Класс manager является производным от employee, и, наоборот, employee является базовым классом для manager. Помимо члена group в классе manager есть члены класса employee (name, age и т.д.). Графически отношение наследования обычно изображается в виде стрелки от производных классов к базовому: employee ^ | manager Обычно говорят, что производный класс наследует базовый класс, поэтому и отношение между ними называется наследованием. Иногда базовый класс называют суперклассом, а производный - подчиненным классом. Но эти термины могут вызывать недоумение, поскольку объект производного класса содержит объект своего базового класса. Вообще производный класс больше своего базового в том смысле, что в нем содержится больше данных и определено больше функций. Имея определения employee и manager, можно создать список служащих, часть из которых является и управляющими: void f() { manager m1, m2; employee e1, e2; employee* elist; elist = &m1; // поместить m1 в elist m1.next = &e1; // поместить e1 в elist e1.next = &m2; // поместить m2 в elist m2.next = &e2; // поместить m2 в elist e2.next = 0; // конец списка } Поскольку управляющий является и служащим, указатель manager* можно использовать как employee*. В то же время служащий не обязательно является управляющим, и поэтому employee* нельзя использовать как manager*. В общем случае, если класс derived имеет общий базовый класс base, то указатель на derived можно без явных преобразований типа присваивать переменной, имеющей тип указателя на base. Обратное преобразование от указателя на base к указателю на derived может быть только явным: void g() { manager mm; employee* pe = &mm; // нормально employee ee; manager* pm = ⅇ // ошибка: // не всякий служащий является управляющим pm->level = 2; // катастрофа: при размещении ee // память для члена `level' не выделялась pm = (manager*) pe; // нормально: на самом деле pe // не настроено на объект mm типа manager pm->level = 2; // отлично: pm указывает на объект mm // типа manager, а в нем при размещении // выделена память для члена `level' } Иными словами, если работа с объектом производного класса идет через указатель, то его можно рассматривать как объект базового класса. Обратное неверно. Отметим, что в обычной реализации С++ не предполагается динамического контроля над тем, чтобы после преобразования типа, подобного тому, которое использовалось в присваивании pe в pm, получившийся в результате указатель действительно был настроен на объект требуемого типа (см. $$13.5).

Функции-члены

Простые структуры данных вроде employee и manager сами по себе не слишком интересны, а часто и не особенно полезны. Поэтому добавим к ним функции: class employee { char* name; //... public: employee* next; // находится в общей части, чтобы // можно было работать со списком void print() const; //... }; class manager: public employee { //... public: void print() const; //... }; Надо ответить на некоторые вопросы. Каким образом функция-член производного класса manager может использовать члены базового класса employee? Какие члены базового класса employee могут использовать функции-члены производного класса manager? Какие члены базового класса employee может использовать функция, не являющаяся членом объекта типа manager? Какие ответы на эти вопросы должна давать реализация языка, чтобы они максимально соответствовали задаче программиста? Рассмотрим пример: void manager::print() const { cout << " имя " << name << '\n'; } Член производного класса может использовать имя из общей части своего базового класса наравне со всеми другими членами, т.е. без указания имени объекта. Предполагается, что есть объект, на который настроен this, поэтому корректным обращением к name будет this->name. Однако, при трансляции функции manager::print() будет зафиксирована ошибка: члену производного класса не предоставлено право доступа к частным членам его базового класса, значит name недоступно в этой функции. Возможно многим это покажется странным, но давайте рассмотрим альтернативное решение: функция-член производного класса имеет доступ к частным членам своего базового класса. Тогда само понятие частного (закрытого) члена теряет всякий смысл, поскольку для доступа к нему достаточно просто определить производный класс. Теперь уже будет недостаточно для выяснения, кто использует частные члены класса, просмотреть все функции-члены и друзей этого класса. Придется просмотреть все исходные файлы программы, найти производные классы, затем исследовать каждую функцию этих классов. Далее надо снова искать производные классы от уже найденных и т.д. Это, по крайней мере, утомительно, а скорее всего нереально. Нужно всюду, где это возможно, использовать вместо частных членов защищенные (см. $$6.6.1). Как правило, самое надежное решение для производного класса - использовать только общие члены своего базового класса: void manager::print() const { employee::print(); // печать данных о служащих // печать данных об управляющих } Отметим, что операция:: необходима, поскольку функция print() переопределена в классе manager. Такое повторное использование имен типично для С++. Неосторожный программист написал бы: void manager::print() const { print(); // печать данных о служащих // печать данных об управляющих } В результате он получил бы рекурсивную последовательность вызовов manager::print().


Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: