Признак оптимальности в развернутой форме




 

Для оптимальности допустимого вектора х= (х12…,хn,) в задаче 1 достаточно существование m-мерного вектора у =(у123,…,уm), удовлетворяющего условиям:

а) уi і 0, iОI2

б) еaijyi + cj = 0, jОJ1,

iОI

в) еaijyi + cj, £ 0, jОJ2,

iОI

г) еaijyi + cj, = 0, если хj >0 для jОJ2,

iОI

д) уi = 0, если еaijxj + bi >0, iОI2,

jОJ

тогда вектор у является оптимальным в задаче 1*.

 

Пример применения признака оптимальности в развернутой форме

 

Как этим признаком пользоваться?

Предположим, что мы имеем допустимый вектор х, т.е. хj ≥0 и такие, что , .

Тогда попытаемся найти вектор у из уравнений б), г), д). Эта система совместна и имеет единственное решение, если выполняются следующие условия:

1) Количество уравнений в системе m (совпадает с числом переменных);

2) Матрицы при неизвестных – неособенные

 

 

Пример применения признака оптимальности в развернутой форме

Проверить вектор на оптимальность в следующей задаче ЛП: Максимизировать при условиях: Решение. Решение задачи необходимо начинать с проверки допустимости данного вектора . Подставляя значения компонент вектора в ограничении I0 и 20, убеждаемся, что все они выполняются. Для проверки остальных условий признака оптимальности составляем двойственную задачу: Требуется найти вектор , удовлетворяющий условиям:

Пример применения признака оптимальности в развернутой форме

Проверить вектор на оптимальность в следующей задаче ЛП: Максимизировать при условиях: еaijyi + cj, = 0, если хj >0 для jОJ2, i I – условие г)   Запишем условие г) признака оптимальности: (т.к. , следовательно, в первом и третьем ограничении условия 20 двойственной задачи достигается равенство)  

Пример применения признака оптимальности в развернутой форме

Проверить вектор на оптимальность в следующей задаче ЛП: Максимизировать при условиях: д) отсутствует, т.к. ни одно ограничение 20 основной задачи не выполняется как строгое неравенство. Из условия г) находим . Найден вектор . Проверяем его допустимость в двойственной задаче, т.е. выясняем, выполняются ли условия I0 и 20 двойственной задачи. Т.к. все условия выполняются, вектор y является оптимальным в двойственной задаче, а вектор х =(1, 0, 1, 0)- оптимальным в основной задаче.  

 

Основная теорема теории линейного программирования

И ее следствия

Для разрешимости задачи математического программирования (как и в любой оптимизационной задачи) необходимо, чтобы множество допустимых решений было не пусто, и целевая функция на этом множестве была ограничена сверху (если задача на максимум), либо снизу (если задача на минимум).

Теорема двойственности. Каковы бы ни были исходные данные, для задач 1 и 1* имеет место один из следующих взаимоисключающих случаев.

1. В задачах 1 и 1* имеются оптимальные векторы х и у и , т.е. обе задачи разрешимы.

2. В задаче 1 существуют допустимые векторы х из некоторого множества Х, но линейная функция на множестве этих векторов не ограничена сверху, т.е. , тогда в задаче 1* нет допустимых векторов.

3. В задаче 1* существуют допустимые векторы , но функция не ограничена снизу на множестве этих векторов, т.е. , тогда в задаче 1 нет допустимых векторов.

4. В задачах 1 и 1* нет допустимых векторов, то есть



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-02 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: