Комбинативная изменчивость




Виды изменчивости

Различают наследственную и ненаследственную изменчивость.

Наследственная (генотипическая) изменчивост ь связана с изменением самого генетического материала. Ненаследственная (фенотипическая, модификационная) изменчивость — это способность организмов изменять свой фенотип под влиянием различных факторов. Причиной модификационной изменчивости являются изменения внешней среды обитания организма или его внутренней среды.

Единицы цитоплазматической (нехромосомной) наследственности отличаются от хромосомных тем, что они не расходятся при мейозе. Поэтому потомство при нехромосомной наследственности воспроизводит признаки только одного из родителей (чаще матери). Таким образом, различают ядерную наследственность, связанную с передачей наследственных признаков, находящихся в хромосомах ядра (иногда ее называют хромосомной наследственностью), и внеядерную наследственность, зависящую от передачи самовоспроизводящихся структур цитоплазмы. Ядерная наследственность реализуется и при вегетативном размножении, но не сопровождается перераспределением генов, что наблюдается при половом размножении, а обеспечивает константную передачу признаков из поколения в поколение, нарушаемую только соматическими мутациями.

Ген — структурная и функциональная единица наследственности, контролирующая развитие определённого признака или свойства.

Геном [нем. Genom, англ. genom (e)], гаплоидный хромосомный набор; совокупность генов, локализованных в одиночном наборе хромосом данного организма

Хромосома - самовоспроизводящийся структурный элемент ядра клетки, содержащий ДНК, в которой заключена генетическая (наследственная) информация. Число, размер и форма хромосомстрого определены и специфичны для каждого вида.

2. Генный уровень организации наследственного материала. Свойства гена как функциональной единицы наследственности и изменчивости: специфичность, дискретность, стабильность, плейотропность, дозированность действия, аллельность, способность к мутациям.

Генный уровень – последовательность нуклеотидов, кодирующих один определённый признак

Специфичность – свойство гена кодировать лишь один определенный признак.

Дискретность – несмешиваемость генов

Стабильность – способность сохранять структуру

Плейотропность – способность гена влиять на несколько фенотипических признаков.

Дозированность действия – количественной зависимостью результата его экспрессии от дозы соответствующего аллеля этого гена.

 

Аллельность – в генотипе организма может быть 2 и более формы одного и того же гена.

Способность к мутациям - Нескорректированные изменения химической структуры генов, воспроизводимые в последовательных циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков

 

3. Хромосомный уровень организации наследственного материала. Хромосома, её химический состав и структурная организация. Морфология хромосом, морфологические виды хромосом.

Хромосомный уровень – молекулы ДНК упакованы в отдельные хромосомы. Весь геном организма состоит из определенного кол-ва х-м, уникального для каждого вида. У человека набор состоит из 46 х-м.

Х-ма состоит из нити ДНК и специальных белков Н1, Н2, Н3, Н4 – гистонов, а также ряда негистоновых белков.

Х-мы подразделяют на 4 основные группы:

- Телоцентрическая

- Метацентрическая

- Субметацентрическая

- Акроцентрическая

 

4. Геномный уровень организации наследственного материала. Геном и кариотип как видовые характеристики.

Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза. Кариотип — диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом, строением и генетическим составом хромосом

5. Генотип – сбалансированная система взаимодействующих генов. Аллельные и неаллельные гены. Виды взаимодействия генов.

Генотип – совокупность всех генов рассматриваемого организма.

Аллельные гены – гены, расположенные в одинаковых локусах гомологичных х-м.

Неаллельные гены – гены расположенные в разных локусах негомологичных х-м.

Взаимодействия могут быть аллельные и неаллельные.

Аллельные: полное доминирование

Неполное доминирование (цветок львиный зев)

Кодоминирование (группы крови)

Неаллельные:

Комплиментарность (суммарное действие двух неалледбных пар генов – гребни у петухов и окраска у попугаев, синие, желтые, зеленые)

Эпистаз (один ген подавляет действие другого гена)

Полимерия (цвет кожи – белый-нигер)

 

6. Взаимодействие аллельных генов в генотипе: доминирование, неполное доминирование, кодоминирование, межаллельная комплементация, аллельное исключение.

Доминирование – рецессивные гены проявляются только в гомозиготе

Неполное доминирование – рецессивные гены проявляются полностью в гомозиготе, и частично в гетерозиготе.

Кодоминирование – при наличии полее 2 аллельных генов возможны разные комбинации. Пример АВ0 система крови

Межаллельная комплементация В этом случае возможно формирование нормального признака D у организма, гетерозиготного по двум мутантным аллелям гена D(D'D").

Аллельное исключение процесс формирования элементарного признака — синтез полипептида с определенной последовательностью аминокислот — зависит, как правило, от взаимодействия по меньшей мере двух аллельных генов, и конечный результат определяется конкретным сочетанием их в генотипе.

 

7. Взаимодействие неаллельных генов: эпистаз, комплементарность, полимерия. Эффект положения.

Комплементарность – взаимодействие неаллельных генов, при доминировании двух неаллельных генов фенотипически проявляется новый признак. Пример - зеленый окрас у волнистых попугаев.

Эпистаз – один доминантный ген блокирует другой неаллельный ген. Пример – окраска тыкв в белый цвет.

Полимерия – количественное проявление генов (пример – пигментация кожи, рост, вес итд)

 

8. Наследственность и наследование. Типы и варианты наследования признаков.

 

Наследственность – свойство живых организмов получать признаки и свойства своих родителей.

Наследование может быть аутосомное и сцепленное с полом. Аутосомное может быть доминантным и рецессивным. Сцепленное с полом может быть Х сцепленное доминантное или рецессивное, и У сцепленное.

Ау дом – наследование признака, генетически доминантного, он проявляется во всех поколениях вне зависимости от пола

Ау рец – наследование рецессивного гена, проявляющегося не в каждом поколении, и очень сильно проявляющемся при близкородственных браках.

Х дом – наследование доминантного признака, ген которого находится в Х. в этом случае большинство носителей проявившегося признака – женщины, т.к. доминантный ген подавляет рецессивный ген, кодирующий отсутствие признака.

Х рец – наследование рецессивного признака, ген которого в Х. тут большинство носителей признака – мужчины, т.к. у женщин рецессивный ген часто подавляется доминантным геном отсутствия признака.

У – наследование признака, ген которого в У х-ме. При этом все носители признака – только мужчины, т.к. у женщин нет У х-мы. При этом признак наследуется с 100% вероятностью от отца к сыну. То есть все сыновья носителя признака будут иметь тот же признак.

 

9. Моногенное и полигенное наследование. Аутосомное и сцепленное с полом типы наследования.

Моногенное наследование. Признак, кодируемый одним геном, наследуется в соответствии с законами Менделя и называется менделирующим. Совокупность всех генов организма называется генотипом. Фенотип — это реализация генотипа (в морфологическом и биохимическом отношениях) в конкретных условиях внешней среды.

Полигенное наследование не подчиняется законам Менделя и не соответствует классическим типам аутосомно-доминантного, аутосомно-рецессивного наследования и наследования, сцепленного с X-хромосомой.

 

Аутосомное наследование – ген находится в аутосомах и наследуется вне зависимости от пола.

Сцепленное с полом – ген находится в половых х-мах.

 

10. Множественный аллелизм. Наследование групп крови по системе АВ0.

 

Множественный аллелизм – явление, при котором ген имеет более чем две аллельные формы.

Группа крови у человека определяется наличием IА, IВ, i0. Ген IA кодирует вторую группу крови, IB – третью. Они доминантные. i0 рецессивный, и кодирует первую группу. Если же в организме будет гетерозигота IАIВ, образуется 4 группа.

 

11. Независимое и сцепленное наследование признаков. Законы независимого наследования Менделя.

В мейозе гомологичные хромосомы расходятся независимо друг от друга и от соседних негомологичных. По этому признаки, находящиеся в разных х-мах наследуются независимо друг от друга.

Гены, находящиеся в одной х-ме наследуются вместе.

 

12. Сцепление генов. Кроссинговер. Опыты Моргана. Хромосомная теория наследственности. Принципы построения генетических карт хромосом.

Признаки, находящиеся в одной х-ме, наследуются вместе. При кроссинговере происходит обмен гомологичными участками гомологичных х-м. и чем больше расстояние между генами в цепи ДНК, тем больше вероятность их расхождения в разные х-мы.
Гены расположены в линейном порядке. Каждый ген занимает определенный локус аллельный гены занимают индентичный локусы.гены лок в одной хромосоме наследуются совместно.
Расстояние между генами принято измерять в морганидах. Количество этих морганид обозначает вероятность кроссинговера между этими генами, расхождение этих генов в соседние гомологичные х-мы. Чем выше расстояние между генами, тем больше кросоверных по наблюдаемым признакам хромосом. Частота кроссинговера яв. Средством точного устаноления локализации генов в хромосоме..

 

 

13. Хромосомный и генный механизм определения и развития пола организма. Возможные нарушения формирования пола у человека.

В организме, помимо аутосомных хромосом, есть половые. У человека кариотип – 46 хромосом, 44 аутосомы и, соответственно, 2 половые. у мужчин это ХУ хромосомы, у женщин ХХ хромосомы. При расхождении хромосом в мейозе половые хромосомы расходятся так же независимо, как и остальные. По этому у мужчин образуются два сорта гамет, а у женщин один. Если при слиянии гамет при оплодотворении в зиготу попадает У хромосома от отца, а Х от матери, то пол зародыша – мужской. Если и от отца и от матери Х, то пол зародыша женский. у насекомых (в основном у колониальных – пчел, ос, шершней) у женских организмов Х0, у мужских ХХ. Изменения на любом этапе эмбриогенеза приводят к нарушениям половой дифференцировки. Синдром Клайнфелтера; Мужчины с кариотипом ХХ; Дисгенезия гонад; Смешанная дисгенезия гонад;Истинный гермафродитизм.

 

14. Сцепленный с полом тип наследования. Особенности Х-сцепленного и Y-сцепленного типов наследования.

Х-сцепленное наследование. Х-хромосома присутствует в кариотипе каждой особи, поэтому признаки, определяемые генами этой хромосомы, формируются у представителей как женского, так и мужского пола. Особи гомогаметного пола получают эти гены от обоих родителей и через свои гаметы передают их всем потомкам. Представители гетерогаметного пола получают единственную Х-хромосому от гомогаметного родителя и передают ее своему гомогаметному потомству.

У млекопитающих (в том числе и человека) мужской пол получает Х-сцепленные гены от матери и передает их дочерям. При этом мужской пол никогда не наследует отцовского Х-сцепленного признака и не передает его своим сыновьям (рис. 6.10).

Так как у гомогаметного пола признак развивается в результате взаимодействия аллельных генов, различают Х-сцепленное доминантное и Х-сцепленное рецессивное наследование. Х-сцепленный доминантный признак (красный цвет глаз у дрозофилы) передается самкой всему потомству. Самец передает свой Х-сцепленный доминантный признак лишь самкам следующего поколения. Самки могут наследовать такой признак от обоих родителей, а самцы —дочерям.

Yсцепленное-Активно функционирующие гены Y-хромосомы, не имеющие аллелей в Х-хромосоме, присутствуют в генотипе только гетерогаметного пола, причем в гемизиготном состоянии. Поэтому они проявляются фенотипически и передаются из поколения в поколение лишь у представителей гетерогаметного пола. Так, у человека признак гипертрихоза ушной раковины («волосатые уши») наблюдается исключительно у мужчин и наследуется от отца к сыну

 

15. Изменчивость. Классификация и характеристика форм изменчивости.

 

Изменчивость- способность организма изменятся и приобретать новые свойства признаки под действием факторов окр. среды.
Изменчивость бывает: генотипическая или наследственная (комбинативаня –разнообразные комбинации в зиготе; мутационная-изменение структур белка по действием фактором окр. среды, изменение в хромосомах или их числа.могут привести к летальным вредным, нетральным и полезным результатам)- явлется источником эволюционного материала, и фенотипическая или ненаслед. Модификационная- изменяет признаки в пределах нормы реакции служит для приспособления к изменяющимся фактором среды.

16. Фенотипическая изменчивость. Фенотип организма. Простые и сложные признаки. Понятие среды. Среда I-го и II-го порядка. Экспрессивность и пенетрантность признаков.

 

Модификационная (фенотипическая) изменчивость заключается в том, что под действием разных условий внешней среды у организмов одного вида, генотипически одинаковых, наблюдается изменение признаков (фенотипа). Изменения эти индивидуальны и не наследуются, т. е. не передаются особям следующих поколений. Рассмотрим проявление подобной закономерности на нескольких примерах.

Под экспрессивностью по­нимают степень выраженности определенного признака. Внеш­няя среда и гены-модификаторы могут изменить экспрессию гена, т. е. выражение признака. Изменчивость проявления му-тантного гена у разных особей — довольно частое явление. На­пример, у потомства дрозофилы — мутантных «безглазых» мух с сильно редуцированным количеством фасеток — содержание их варьирует от почти полного отсутствия до половины нормы.

Пенетрантность гена — это доля особей, у которых проявля­ется ожидаемый фенотип. При полной пенетрантности (100 %) мутантный ген проявляет свое действие у каждой особи. При неполной пенетрантности (меньше 100 %) ген проявляется фе-нотипически не у всех особей. Экспрессивность и пенетрант­ность гена в значительной степени зависят, по-видимому, от влияния генов-модификаторов и условий развития особей.

17. Модификационная изменчивость. Норма реакции. Вариационно-статистический метод изучения модификационной изменчивости.

Модификационная – внешняя изменчивость, происходящая под действием внешней среды, и имеет приспособительный характер.

Норма реакции – граница изменчивости, при которой приспособление, достигнув определенной точки, прекращается.

Вариационно-статический метод заключается в составление ряда с частотой встречаемости каждого варианта и определение среднего значения (чем дальше он отстает от ср. значения тем реже он встречается

 

 

18. Генотипическая изменчивость. Комбинативная изменчивость. Механизмы возникновения и биологическое значение.

Наследственная (генотипическая) изменчивост ь связана с изменением самого генетического материала. Ненаследственная (фенотипическая, модификационная) изменчивость — это способность организмов изменять свой фенотип под влиянием различных факторов. Причиной модификационной изменчивости являются изменения внешней среды обитания организма или его внутренней среды.

 

 

Комбинативная изменчивость

Связана с новым сочетанием неизменных генов родителей в генотипах потомства. Факторы комбинативной изменчивости.

1.Независимое и случайное расхождение гомологичных хромосом в анафазе I мейоза.

2.Кроссинговер.

3.Случайное сочетание гамет при оплодотворении.

4.Случайный подбор родительских организмов.

 

19. Мутационная изменчивость. Классификация мутаций, характеристика и биологическое значение мутаций.

Мутации – изменение строения нитей ДНК в клетке, возникающее под действием мутагенных факторов (температура, радиация, химические вещ-ва итд). Мутации бывают: соматические (происходит в соматических клетках и не передаётся по наследству) и генеративные (происходят в половых клетках и передаются потомству,).
По измен генотипа: Генные (изменения в строении самого гена), хромосомные (изменение в строении хромосом) и геномные (изменение количества хромосом, слепление их вместе). По прич. Возник. Спонтанные (ненаправленно, под действием неизвестных факторов) и Индуцированные (вызваны искуственно, под действием известного фактора). По результату: летальные, вредные, полезные, нейтральные. По измен фенотипа: морфологические,(наруш стр. органов),физиологические(наруш. Физиологических процессов),иммунологические(появ. Новых антигенов), биохимические(наруш. Обмен проц.)

20. Спонтанные и индуцированные мутации. Мутагены, их природа и действие на организм. Естественные и искусственные антимутагенные механизмы.

Спонтанные (случайные) мутации — это мутации, возникающие при нормальных условиях жизни. Спонтанный процесс зависит от внутренних и внешних факторов Спонтанные мутации у человека могут возникать в соматических и генеративных тканях.

Метод учета спонтанных доминантных мутаций основан на том, что в редких случаях у одного из детей появится доминантный признак, отсутствующий у обоих родителей

Спонтанные происходят в природе крайне редко с частотой 1-100 на миллион экземпляров данного гена. В настоящие время очевидно, что спонтанный мутационный процесс зависит как от внутренних, так и от внешних факторов, которые называют мутационным давлением среды.

Индуцированные мутации возникают при воздействии на человека мутагенами –факторами, вызывающими мутации. Мутагены же бывают трех видов:
. Физические (радиация, электро – магнитное излучение, давление, температура и т.д.)
. Химические (цитостатики, спирты,фенолы и т.д.)
. Биологические (бактерии и вирусы)

естественные - репарация репликация двойственность хромосом

 

21. Генные мутации. Роль генных мутаций в создании генетического полиморфизма и возникновении наследственной патологии у человека. Генные болезни.

Генные мутации встречаются наиболее часто.

 

Причины генных мутаций:

 

1) выпадение нуклеотида;

 

2) вставка лишнего нуклеотида (эта и предыдущая причины приводят к сдвигу рамки считывания);

 

3) замена одного нуклеотида на другой.

К генным болезням у человека относятся многочисленные болезни обмена веществ. Они могут быть связаны с нарушением обмена углеводов, липидов, стероидов, пуринов и пиримидинов,билирубина

, металлов и др. Пока еще нет единой классификации наследственных болезней обмена веществ.

[Болезни аминокислотного обмена

Самая многочисленная группа наследственных болезней обмена веществ. Почти все они наследуются по аутосомно-рецессивному типу. Причина заболеваний — недостаточность того или иного фермента, ответственного за синтез аминокислот. К ним относится:

§ фенилкетонурия - нарушение превращения фенилаланина в тирозин из-за резкого снижения активности фенилаланингидроксилазы;

§ алкаптонурия - нарушение обмена тирозина вследствие пониженной активности фермента гомогентизиназы и накоплением в тканях организма гомотентизиновой кислоты;

§ глазо-кожный альбинизм - обусловлен отсутствием синтеза фермента тирозиназы.

[Нарушения обмена углеводов

§ галактоземия - отсутствие фермента галактозо-1-фосфат-уридилтрансферазы и накопление в крови галактозы;

§ гликогеновая болезнь - нарушение синтеза и распада гликогена.

[Болезни, связанные с нарушением липидного обмена

§ болезнь Ниманна-Пика - снижение активности фермента сфингомиелиназы, дегенерация нервных клеток и нарушение деятельности нервной системы;

§ болезнь Гоше - накопление цереброзидов в клетках нервной и ретикуло-эндотелиальной системы, обусловленное дефицитом фермента глюкоцереброзидазы.

]Наследственные болезни пуринового и пиримидинового обмена

§ подагра;

§ Синдром Леша-Найхана.

]Болезни нарушения обмена соединительной ткани

§ синдром Марфана («паучьи пальцы», арахнодактилия) - поражение соединительной ткани вследствие мутации в гене, ответственном за синтез фибриллина;

§ мукополисахаридозы - группа заболеваний соединительной ткани, связанных с нарушеним обмена кислых гликозаминогликанов.

§ Фибродисплазия - заболевание соединительной ткани,связанное с ее прогрессирующим окостенением в результате мутации в гене ACVR1

[]Наследственные нарушения циркулирующих белков

§ гемоглобинопатии - наследственные нарушения синтеза гемоглобина. Выделяют количественные (структурные) и качественные их формы. Первые характеризуются изменением первичной структуры белков гемоглобина, что может приводить к нарушению его стабильности и функции (серповидноклеточная анемия). При качественных формах структура гемоглобина остается нормальной, снижена лишь скорость синтеза глобиновых цепей (талассемия).

Наследственные болезни обмена металлов

§ болезнь Коновалова-Вильсона и др.

Синдромы нарушения всасывания в пищеварительном тракте

§ муковисцидоз;

§ непереносимость лактозы и др.

 

 

22. Хромосомные мутации, их классификация. Роль хромосомных мутаций в развитии патологических состояний человека.

Хромосомные мутации — это изменения структуры хромосом в процессе клеточного деления. Различают следующие виды хромосомных мутаций.

1.Дупликация — удвоение участка хромосомы за счет неравного кроссинговера.

2.Делеция — потеря участка хромосомы.

3.Инверсия — поворот участка хромосомы на 180°.

4.Транслокация — перемещение участка хромосомы на другую хромосому.

 

23. Геномные мутации. Хромосомные болезни, механизмы возникновения и наиболее характерные клинические проявления.

 

Геномные мутации — это изменение числа хромосом. Виды геномных мутаций.

1.Полиплоидия — изменение числа гаплоидных наборов хромосом в кариотипе. Под кариотипом понимают число, форму и количество хромосом, характерные для данного вида. Различают нуллисомию (отсутствие двух гомологичных хромосом), моносомию (отсутствие одной из гомологичных хромосом) и полисомию (наличие двух и более лишних хромосом).

2.Гетероплоидия — изменение числа отдельных хромосом в кариотипе.

 

 

Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом

§ синдром Дауна — трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики;

§ синдром Патау — трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто — полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года;

§ синдром Эдвардса — трисомия по 18 хромосоме.

[Болезни, связанные с нарушением числа половых хромосом

§ синдром Шерешевского-Тернера — отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость,половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);

§ полисомия по Х-хромосоме — включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения;

§ полисомия по Y-хромосоме — как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

§ синдром Кляйнфельтера — полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия

§ триплоидии, тетраплоидии и т. д.; причина — нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин — 69, XXX); почти всегда летальны до рождения.

 

24. Особенности человека как объекта генетических исследований. Методы генетики человека: генеалогический, цитогенетический, близнецовый, популяционно-статистический, биохимический. Методы генетики соматических клеток, молекулярно-генетические методы.

С точки зрения приведенных выше характеристик видов, удобных для применения гибридологического метода генетического анализа, человек как вид обладает целым рядом особенностей, не позволяющих применять этот метод для изучения его наследственности и изменчивости. Во-первых, у человека не может быть произведено искусственного направленного скрещивания в интересах исследователя. Во-вторых, низкая плодовитость делает невозможным применение статистического подхода при оценке немногочисленного потомства одной пары родителей. В-третьих, редкая смена поколений, происходящая в среднем через 25 лет, при значительной продолжительности жизни дает возможность одному исследователю наблюдать не более 3—4 последовательных поколений. Наконец, изучение генетики человека затрудняется наличием в его геноме большого числа групп сцепления генов (23 у женщин и 24 у мужчин), а также высокой степенью фенотипического полиморфизма, связанного с влиянием среды.

 

Генеалогический метод заключается в анализе родословных и позволяет определить тип наследования (доминантный
рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемогопризнака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.

Цитогенетический метод основан на микроскопическом исследовании хромосом. Поскольку все их 23 пары у человека детально изучены, можно фиксировать изменение числа или структуры хромосом. Устанавливая связь этого с конкретными заболеваниями, получают надежные методы диагностики, выявления наследственных болезней еще у новорожденных (рис. 3), что очень важно. При раннем выявлении ряда заболеваний, передающихся по наследству, лечение окажется эффективным.

Цитологические методы связаны с проведением окрашивания цитологического материала и последующей микроскопией. В эту группу методов входят:

1) метод определения Х-хроматина интерфазных хромосом путем окрашивания нефлюоресцентными или флюоресцентными красителями;

2) метод определения Y-хроматина интерфазных хромосом окрашиванием флюоресцентными красителями;

3) рутинный метод окрашивания метафазных хромосом для определения количества и групповой принадлежности хромосом, идентификации 1, 2, 3, 9, 16 хромосом и Y-хромосомы;

4) метод дифференциального окрашивания метафазных хромосом для идентификации всех хромосом по особенностям поперечной исчерченности. В этом методе чаще всего для микроскопии используются лимфоциты, фибробласты, клетки костного мозга, половые клетки, клетки волосяной луковицы.

Многие наследственные заболевания, связанные с нарушениями обмена веществ, диагностируются с помощью биохимических методов. Они позволяют выявить либо аномальные белки-ферменты, либо промежуточные продукты обмена, свидетельствующие о наличии болезни. Сегодня установлено более 1 тыс. заболеваний и нарушений обмена веществ у человека, имеющих наследственную природу.

Молекулярно-генетические методы. Эти методы позволяют анализировать фрагменты ДНК, находить и изолировать отдельные гены и их сегменты и устанавливать в них последовательность нуклеотидов.

 

С помощью этих методов изучают наследственность и изменчивость соматических клеток, что в значительной мере компенсирует невозможность применения к человеку метода гибридологического анализа.

Методы генетики соматических клеток, основанные на размножении этих клеток в искусственных условиях, позволяют не только анализировать генетические процессы в отдельных клетках организма, но благодаря полноценности наследственного материала, заключенного в них, использовать их для изучения генетических закономерностей целостного организма.

Культивирование позволяет получить достаточное количество клеточного материала для цитогенетических, биохимических, иммунологических и других исследований.

Планирование—получение потомков одной клетки; дает возможность проводить в генетически идентичных клетках биохимический анализ наследственно обусловленных процессов.

Селекция соматических клеток с помощью искусственных сред используется для отбора мутантных клеток с определенными свойствами и других клеток с интересующими исследователя характеристиками.

Гибридизация соматических клеток основана на слиянии совместно культивируемых клеток разных типов, образующих гибридные клетки со свойствами обоих родительских видов. Для гибридизации могут использоваться клетки от разных людей, а также от человека и других животных (мыши, крысы, морской свинки, обезьяны, джунгарского хомячка, курицы).

Благодаря методам генетики соматических клеток можно изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Они позволяют судить о генетической гетерогенности наследственных болезней, изучать их патогенез на биохимическом и клеточном уровнях. Развитие этих методов определило возможность точной диагностики наследственных болезней в пренатальном периоде.

 

25. Цитогенетический метод изучения генетики человека. Денверская и Парижская номенклатура хромосом. Значение цитогенетического метода в диагностике хромосомных болезней.

Цитогенетический метод основан на микроскопическом исследовании хромосом. Поскольку все их 23 пары у человека детально изучены, можно фиксировать изменение числа или структуры хромосом. Устанавливая связь этого с конкретными заболеваниями, получают надежные методы диагностики, выявления наследственных болезней еще у новорожденных (рис. 3), что очень важно. При раннем выявлении ряда заболеваний, передающихся по наследству, лечение окажется эффективным.

Цитологические методы связаны с проведением окрашивания цитологического материала и последующей микроскопией. В эту группу методов входят:

1) метод определения Х-хроматина интерфазных хромосом путем окрашивания нефлюоресцентными или флюоресцентными красителями;

2) метод определения Y-хроматина интерфазных хромосом окрашиванием флюоресцентными красителями;

3) рутинный метод окрашивания метафазных хромосом для определения количества и групповой принадлежности хромосом, идентификации 1, 2, 3, 9, 16 хромосом и Y-хромосомы;

4) метод дифференциального окрашивания метафазных хромосом для идентификации всех хромосом по особенностям поперечной исчерченности. В этом методе чаще всего для микроскопии используются лимфоциты, фибробласты, клетки костного мозга, половые клетки, клетки волосяной луковицы.

Все аутосомы согласно Денверской классификации были подраз­делены на 7 групп - от А до G. Группа А (хромосомы 1-3) - большие метацентрические хромосомы. Группа В(хромосомы 4 и 5) - вклю­чает большие субметацентрические хромосомы. Группа С (хромосо­мы 6-12) - среднего размера субметацентрические хромосомы. Груп­па D (хромосомы 13-15) - большие акроцентрические хромосомы. Группа Е (хромосомы 16-18) - включает короткие субметацентрические хромосомы. Группа F - (хромосомы 19 и 20) - маленькиеме-тацентрические хромосомы. Группа G - (хромосомы 21 и 22) - вклю­чает малые акроцентрические хромосомы. Половая Х-хромосома по длине и центромерному индексу(соотношению между длиной корот­кого и длинного плечей хромосомы) близка к хромосомам группы С, а Y-хромосома по величине и морфологии (при обычной окраске) близка кхромосомам группы

 

 

В1971 году в Париже на IV международном конгрессе по генетике человека была согласована единая система идентификации хромосом чело­века, учитывавшая дифференцировку хромосом по длине.

Каждая хромосома набора человека при дифференциальной ок­раске характеризуется уникальным для нее сочетанием темно окра­шенных сегментов или полос (англ. - band),чередующихся с нео­крашенными участками или светлыми сегментами. Именно такое спе­цифическое для данной хромосомы сочетание сегментов позволяет четко ееидентифицировать и отличить от других хромосом набора. В пределах короткого (р) и длинного (q) плеча каждой хромосомы выделяют ряд четко идентифицируемых областей илирегионов (англ. - region), которые нумеруются арабскими цифрами начиная от центромеры (сеп) к теломерному (tel) участку или терминаль­ному (ter) концу хромосомы. Каждая областьхромосомы включает определенное число сегментов, нумерация которых (второй арабс­кой цифрой) также идет в направлении от центромерного к теломер­ному участку

 

26. Половой хроматин. Экспресс-метод определения полового хроматина



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: