МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ и СЕРТИФИКАЦИЯ




19) Международная организация по стандартизации (International Organization for Standardization, ISO) — международная организация, занимающаяся выпуском стандартов. Международная организация по стандартизации создана в 1946 двадцатью пятью национальными организациями по стандартизации. Фактически её работа началась с 1947. СССР был одним из основателей организации, постоянным членом руководящих органов, дважды представитель Госстандарта избирался председателем организации. Россия стала членом ИСО как правопреемник распавшегося государства. 23 сентября 2005 года Россия вошла в Совет ИСО. При создании организации и выборе её названия учитывалась необходимость того, чтобы аббревиатура наименования звучала одинаково на всех языках. Для этого было решено использовать греческое слово isos — равный, вот почему на всех языках мира Международная организация по стандартизации имеет краткое название ISO (ИСО). Сфера деятельности ИСО касается стандартизации во всех областях, кроме электротехники и электроники, относящихся к компетенции Международной электротехнической комиссии(МЭК, IEC). Некоторые виды работ выполняются совместными усилиями этих организаций. Кроме стандартизации ИСО занимается проблемами сертификации. ИСО определяет свои задачи следующим образом: содействие развитию стандартизации и смежных видов деятельности в мире с целью обеспечения международного обмена товарами и услугами, а также развития сотрудничества в интеллектуальной, научно-технической и экономической областях.

Основная цель Организации сформулирована в ее Уставе: "…содействие развитию стандартизации в мировом масштабе для обеспечения международного товарообмена и взаимопомощи, а также для расширения сотрудничества в областях интеллектуальной, научной, технической и экономической деятельности". Официальные языки ISO - английский, французский и русский.

Центральный секретариат ISO расположен в Женеве, имеет штат около 200 человек. Он осуществляет организацию текущей работы комитетов, а также информационное обеспечение членов ISO.

На сегодняшний день в состав ИСО входят 120 стран своими национальными организациями по стандартизации. Россию представляет Госстандарт РФ в качестве комитета — члена ИСО. Всего в составе ИСО более 80 комитетов-членов. Кроме комитетов-членов членство в ИСО может иметь статус членов-корреспондентов, которыми являются организации по стандартизации развивающихся государств. Категория член-абонент введена для развивающихся стран. Комитеты-члены имеют право принимать участие в работе любого технического комитета ИСО, голосовать по проектам стандартов, избираться в состав Совета ИСО и быть представленными на заседаниях Генеральной ассамблеи. Члены-корреспонденты (их 25) не ведут активной работы в ИСО, но имеют право на получение информации о разрабатываемых стандартах. Члены-абоненты уплачивают льготные взносы, имеют возможность быть в курсе международной стандартизации.

Организационно в ИСО входят руководящие и рабочие органы. Руководящие органы: Генеральная ассамблея (высший орган), Совет, Техническое руководящее бюро. Рабочие органы — технические Комитеты (ТК), подкомитеты, технические консультативные группы (ТКГ).

Генеральная ассамблея — это собрание должностных лиц и делегатов, назначенных комитетами-членами. Каждый комитет-член имеет право представить не более трех делегатов, но их могут сопровождать наблюдатели. Члены-корреспонденты и члены-абоненты участвуют как наблюдатели.

ПЛАКО (PLACO — Planning Committee) подготавливает предложения по планированию работы ИСО, по организации и координации технических сторон работы. В сферу работы ПЛАКО входят рассмотрение предложений по созданию и роспуску технических комитетов, определение области стандартизации, котоСТАКО (STACO — Standing Committee for the Study of Principles of Standardization) обязан оказывать методическую и информационную помощь Совету ИСО по принципам и методике разработки международных стандартов. Силами комитета проводятся изучение основополагающих принципов стандартизации и подготовка рекомендаций по достижению оптимальных результатов в данной области.

СТАКО занимается также терминологией и организацией семинаров по применению международных стандартов для развития торговли.рой должны заниматься комитеты.

КАСКО (CASCO — Committee on conformity assessment) занимается вопросами подтверждения соответствия продукции, услуг процессов и систем качества требованиям стандартов, изучая практику этой деятельности и анализируя информацию. Комитет разрабатывает руководства по испытаниям и оценке соответствия (сертификации) продукции, услуг, систем качества, подтверждению компетентности испытательных лабораторий и органов по сертификации. Важная область работы КАСКО — содействие взаимному признанию и принятию национальных и региональных систем сертификации, а также использованию международных стандартов в области испытаний и подтверждения соответствия. КАСКО совместно с МЭК подготовлен целый ряд руководств по различным аспектам сертификации, которые широко используются в странах-членах ИСО и МЭК: принципы, изложенные в этих документах, учтены в национальных системах сертификации, а также служат основой для соглашений по оценке соответствия взаимопоставляемой продукции в торгово-экономических связях стран разных регионов. КАСКО также занимается вопросами создания общих требований к аудиторам по аккредитации испытательных лабораторий и оценке качества работы аккредитующих органов; взаимного признания сертификатов соответствия продукции и систем качества и др.

ДЕВКО (DEVCO — Committee on developing country matters) изучает запросы развивающихся стран в области стандартизации и разрабатывает рекомендации по содействию этим странам в данной области. Главные функции ДЕВКО: организация обсуждения в широких масштабах всех аспектов стандартизации в развивающихся странах, создание условий для обмена опытом с развитыми странами; подготовка специалистов по стандартизации на базе различных обучающих центров в развитых странах; содействие ознакомительным поездкам специалистов организаций, занимающихся стандартизацией в развивающихся странах; подготовка учебных пособий по стандартизации для развивающихся стран; стимулирование развития двустороннего сотрудничества промышленно развитых и развивающихся государств в области стандартизации и метрологии. В этих направлениях ДЕВКО сотрудничает с ООН. Одним из результатов совместных усилий стало создание и функционирование международных центров обучения.

КОПОЛКО (COPOLCO — Committee on consumer policy) изучает вопросы обеспечения интересов потребителей и возможности содействия этому через стандартизацию; обобщает опыт участия потребителей в создании стандартов и составляет программы по обучению потребителей в области стандартизации и доведению до них необходимой информации о международных стандартах. Этому способствует периодическое издание Перечня международных и национальных стандартов, а также полезных для потребителей руководств: «Сравнительные испытания потребительских товаров», «Информация о товарах для потребителей», «Разработка стандартных методов измерения эксплуатационных характеристик потребительских товаров» и др. КОПОЛКО участвовал в разработке руководства ИСО/МЭК по подготовке стандартов безопасности.

РЕМКО (REMCO — Committee on reference materials) оказывает методическую помощь ИСО путем разработки соответствующих руководств по вопросам, касающимся стандартных образцов (эталонов). Так, подготовлен справочник по стандартным образцам и несколько руководств: «Ссылка на стандартные образцы в международных стандартах», «Аттестация стандартных образцов. Общие и статистическое принципы» и др. Кроме того, РЕМКО — координатор деятельности ИСО по стандартным образцам с международными метрологическими организациями, в частности, с МОЗМ — Международной организацией законодательной метрологии.

Международная электротехническая комиссия (МЭК; англ. International Electrotechnical Commission,IEC) — международная некоммерческая организация по стандартизации в области электрических, электронных и смежных технологий. Некоторые из стандартов МЭК разрабатываются совместно с Международной организацией по стандартизации (ISO).

МЭК составлена из представителей национальных служб стандартов. МЭК была основана в 1906 году и в настоящее время в её состав входят более 76 стран. Первоначально комиссия располагалась в Лондоне, с 1948 года по настоящее время штаб-квартира находится в Женеве, Швейцария. В настоящее время имеет региональные центры в Юго-восточной Азии (Сингапур), Латинской Америке (Сан-Пауло, Бразилия) и Северной Америке (Бостон, США).

МЭК способствовала развитию и распространению стандартов для единиц измерения, особенно гаусса, герца, и вебера. Также комиссия МЭК предложила систему стандартов, которая в конечном счёте стала единицами СИ. В 1938 году был издан международный словарь с целью объединить электрическую терминологию. Эти усилия продолжаются и Международный электротехнический словарь остаётся важной работой в электрических и электронных отраслях промышленности.Стандарты МЭК имеют номера в диапазоне 60 000 — 79 999, и их названия имеют вид типа МЭК 60411 Графические символы. Номера старых стандартов МЭК были преобразованы в 1997 году путём добавления числа 60 000, например, стандарт МЭК 27 получил номер МЭК 60027. Стандарты, развитые совместно с Международной организацией по стандартизации, имеют названия вида ISO/IEC 7498-1:1994 Open Systems Interconnection: Basic Reference Model.

27) Основные понятия в области метрологии

Основные термины и определения в области метрологии устанавливаются Рекомендациями по межгосударственной стандартизации РМГ29-99 «Метрология. Основные понятия и определения».

Метрология — наука об измерениях физических величин, методах и средствах обеспечения их единства и способах достижения требуемой точности. В переводе с греческого «метрология» означает учение о мерах. К разделами метрологии относят теоретическую, законодательную и практическую.

1. Теоретическая метрология. Раздел метрологии, предметом которого является разработка фундаментальных основ метрологии.

2. Законодательная метрология. Устанавливаются обязательные технические и юридические требова-ния по применению единиц физических величин, эталонов, методов и средств измерений, направлен-ных на обеспечение единства и необходимой точности измерений в интересах общества.

3. Практическая (прикладная) метрология. Предметом являются вопросы практического применения разработок теоретической метрологии и положений законодательной метрологии.

Измерение физической величины — совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном и неявном виде) измеряемой величины с её единицей и получение значения этой величины.

1.1.1. Основные представления теоретической метрологии. Физические величины и единицы.

Согласно РМГ 22-99, физическая величина (ФВ) одно из свойств физического объекта, в качественном отношении общее для многих физических объектов, а в количественном отношении индивидуальное для каждого из них. Величина не существует сама по себе, она имеет место постольку поскольку существует объект со свойствами, выражаемыми определёнными величинами.

Идеальные величины относятся главным образом к математическим абстракциям, являющимися отражением реальности. ФВ присущи материальным объектам и изучаются в курсах естественных (физика, химия) и технических наук. Нефизические величины изучаются в курсах общественных наук - философии, экономике и т.д. Физические объекты обладают неограниченным числом свойств, которые проявляются с бесконечным разнообразием, что вызывает затруднения в их отражении конечными совокупностями чисел, возникающими при их измерении. Отметим, что оценивание нефизических величин не входит в задачи теоретической метрологии. Для более детального изучения ФВ необходимо классифицировать и выявить общие метрологические особенности их отдельных групп.

ФВ целесообразно разделить на измеряемые и оцениваемые. Если первые могут быть выражены количественно в виде определённого числа установленных единиц измерения, то для вторых в силу невозможности введения единицы измерения (твёрдость), приписываются величине определённое число по установленным правилам. Оценивание такой величины осуществляется при помощи шкал.

Шкала величины - упорядоченная последовательность её значений, принятая по соглашению на основании результатов точных измерений.

Нефизические величины могут быть только оценены.

По видам явлений ФВ делятся на следующие группы:

• вещественные, т.е. описывающие физические и физико-химические свойства веществ, материалов и изделий из них. К этой группе относятся масса, плотность, электрическое сопротивление и др. Иногда указанные ФВ называют пассивными. Для их измерения необходимо использовать вспомогательный источник энергии, с помощью которого формируется измерительный сигнал. При этом пассивные ФВ преобразуются в активные, которые и измеряются;

• энергетические, т. е. величины, описывающие энергетические характеристики процессов преобразования, передачи и использования энергии. К ним относятся ток, напряжение, мощность, энергия. Эти величины называют активными. Они могут быть преобразованы в сигналы измерительной информации без использования вспомогательных источников энергии;

• характеризующие протекание процессов во времени. К этой группе относятся различного рода спектральные характеристики, корреляционные функции и др.

По принадлежности к различным группам физических процессов ФВ делятся на пространственно-временные, механические, тепловые, электрические и магнитные, акустические, световые, физико-химические, ионизирующих излучений, атомной и ядерной физики.

По степени условной независимости от других величин данной группы·ФВ делятся на основные (условно независимые), производные (условно зависимые) и дополнительные. В настоящее время в системе СИ используется семь физических величин, выбранных в качестве основных: длина, время, масса, температура, сила электрического тока, сила света и количество вещества. К дополнительным физическим величинам относятся плоский и телесный углы.

По наличию размерности ФВ делятся на размерные, т. е. имеющие размерность, и безразмерные.

Совокупность чисел Q, отображающая различные по размеру однородные величины, должна быть совокупностью одинаково именованных чисел. Это именование является единицей ФВ или ее доли. Условно за единицу принимается физическая величина (ФВ) фиксированного размера, а результат может быть выражен в единицах ФВ или её долях.

Для третьей группы числовое значение показывает, в каком соотношении значение измеряемой величины находится в сравнении с принятым за единицу.

Измерение - познавательный процесс, заключающейся сравнении путём физического эксперимента данной ФВ с известной ФВ, принятой за единицу измерения.

1.1.2. Шкалы измерений.

В соответствии с логикой проявления свойств различают 5 основных типов шкал измерений.

1. Шкала наименований (шкала классификации). Такие шкалы используются для классификации эмпирических объектов, свойства которых проявляются только в отношении эквивалентности (атлас цветов). Эти свойства нельзя считать физическими величинами, поэтому это не шкалы ФВ. В шкалах наименований отнесение к классу эквивалентности того или иного отражаемого свойства происходит с использованием органов чувств человека и наиболее адекватен результат, выбранный большинством экспертов. Числа, приписанные объектам, могут быть используемы лишь для определения вероятности или частоты появления объекта, но для математических действий (например суммирования) эти числа использовать нельзя. В таких шкалах нет понятия нуля, “больше“ или “меньше“ и единицы измерения.

2. Шкала порядка (шкала рангов). Если свойство объекта проявляется в отношении эквивалентности и порядка, то можно построить шкалу. При этом в шкале может существовать 0 или нет, но принципиально нельзя ввести единицу измерения. В тех случаях, когда уровень познания не позволяет точно установить отношения, существующие между величинами данной характеристики, используют условные (эмпирические) шкалы порядка. Иногда использование такой шкалы удобно и достаточно для практики. Условная шкала - это шкала ФВ, исходные значения которой выражены в условных единицах (12-бальная шкала Бофорта для силы морского ветра).

Широкое распространение получили шкалы порядка с реперными точками на них (например, шкала твёрдости Мооса). На ней принимается твёрдость талька за 1 (первая реперная точка), гипса за 2, и т.д., алмаза за 10. Отнесение минерала к той или иной градации твёрдости производится на основании эксперимента, когда исследуемый материал царапается опорным. Более твёрдый материал оставит след на образце, значит верхняя граница твёрдости не меньше твёрдости опорного материала. Нижняя граница определяется аналогично.

В условных шкалах одинаковым интервалам между размерами данной величины не соответствуют одинаковые размерности чисел, отображающие размеры. Для вычисления вероятностей эти числа можно использовать, однако их нельзя использовать для других математических операций.

Определение значения величин при помощи таких шкал нельзя считать измерением, т.к. как на такой шкале не может быть введена единица измерения. Это операция оценивания, неоднозначная и весьма условная.

3. Шкала интервалов (шкала разностей). Эта шкала применяется для объектов, которые удовлетворяют отношениям эквивалентности, порядка и аддитивности. Она состоит из одинаковых интервалов, имеет единицу измерения и произвольно выбранное начало – нулевую точку. К таким шкалам относится летоисчисление по различным календарям, температурные шкалы Цельсия, Фаренгейта, Реомюра. На ней определены действия сложения, однако складывать даты событий, например, бессмысленно. Шкала интервалов величины Q описывается уравнением:

Q = Q0 + q [Q],

где q - числовое значение величины; Q0 - начало отсчета шкалы;[Q] - единица рассматриваемой величины. Задать шкалу можно двумя способами.

При первом выбирают два значения Q1 и Q0 - величины, называемые основные реперы, которые просто реализуются практически, а интервал (Q1 - Q0) - называется основной интервал. Точка Q0 принимается за начало отсчёта, а величина (Q1 - Q0)/n = [Q] - за единицу Q.

Перевод одной шкалы интервалов Q = Q01 + q1[Q]1, в другую Q = Q02 + q2 [Q]2 осуществляется по формуле:

q2 =(q1)

По второму пути единица воспроизводится как интервал, его доля или некоторое число интервалов, а начало отсчета выбирается каждый раз по - разному, в зависимости от конкретных условий изучаемого явления. Пример такого подхода - шкала времени., в которой секунда равна 9192631770 периодам излучения, соответствующих переходу между двумя сверхтонкими уровнями основного состояния атома цезия - 133. За начало отсчета принимается начало изучаемого явления.

4. Шкала отношений. Эти шкалы описывают свойства эмпирических объектов, которые удовлетво-ряют отношениям эквивалентности, порядка и аддитивности (шкалы второго рода - аддитивные), а иногда и пропорциональности (шкалы первого рода - пропорциональные). Примеры: шкала массы (второго рода), термодинамической температуры (первого рода).

В шкалах отношений существует однозначный естественный критерий нуля и единица измерений, установленная по соглашению. Формально шкала отношений - это шкала интервалов с естественным началом отсчета. К значениям, полученным по этой шкале, применимы все арифметические действия, что имеет важное значение при измерении ФВ. Шкалы отношений - самые совершенные. Они описываются уравнением:

Q = q [Q],

где Q - ФВ, для которой строится шкала, [Q] - ее единица измерения, q - числовое значение ФВ. Переход от одной шкалы отношений к другой происходит в соответствии с уравнением

q2 = q1 [Q]1 /[Q]2.

5. Абсолютные шкалы. Иногда используют понятие абсолютных шкал, под которыми понимают шкалы, обладающие всеми признаками шкал отношений, но дополнительно имеющие естественное однозначное определение единицы измерения и не зависящее от принятой системы единиц измерения. Такие шкалы соответствуют относительным величинам: коэффициенту усиления и т.д. Для образования многих производных единиц в системе СИ используются безразмерные и счетные единицы абсолютных шкал.

Шкалы наименований и порядка называют неметрическими (концептуальными), а шкалы интервалов и отношений - метрическими (материальными). Абсолютные и метрические шкалы относятся к разряду линейных. На практике шкалы измерений стандартизуются, также, как и единицы измерений. В необходимых случаях принимается стандарт способа и условий их однозначного воспроизведения.

Во всех случаях проведения измерений, независимо от измеряемой величины, метода и средства измерений, общее, что составляет основу измерений - сравнение опытным путём данной величины с другой ей подобной, принятой за единицу. Это может быть записано в виде общего уравнения измерений:

Q=n×[Q],

где Q − измеряемая физическая величина; п − число единиц; [Q] − единица физической величины.

Значение физической величины Q, найденное при измерении, называют действительным.

В ряде случаев нет необходимости определять действительное значение физической величины, а достаточно определить принадлежность физической величины некоторой области Т: или .

Контроль - это оценка соответствия физической величины установленному допуску.

Средство измерений (СИ) - это техническое средство, используемое при измерениях и имеющее нормированные метрологические свойства. Для подтверждения этих свойств служит поверка.

Поверка средств измерений – это совокупность операций, выполняемая органами государственной метрологической службы с целью подтверждения соответствия средств измерения установленным техническим требованиям.

Существует огромное количество видов средств измерений, отличающихся по назначению, принципу действия, пределам измерений, точности. Поэтому в метрологии средства измерений классифицируются по определенным признакам.

Средства измерения делятся на:

· эталоны;

· меры;

· образцовые средства;

· рабочие средства.

Эталоны — средства измерений, официально утвержденные и обеспечивающие хранение и воспроизведение единицы физической величины с целью передачи ее размера другим средствам измерений.

Меры — средства измерений, предназначенные для воспроизведения заданного размера физической величины.

Образцовые средстваизмерения применяютсядля поверки по ним других средств измерений. Это могут быть как меры, так и приборы и инструменты.

Рабочие средства применяют для технических измерений, не связанных с передачей размера единиц

Погрешность - отклонение результата измерения от истинного значения измеряемой величины.

Точность измерений характеризуется близостью их результатов к истинному значению измеряемой величине.

Истинное значение физической величины - это идеализация свойства объекта, не зависящее от средств познания и являющееся абсолютной истиной, к которой мы стремимся, пытаясь выразить в виде числа.

Действительное значение физической величины - значение, найденное экспериментально, и настолько близкое к истинному, что может быть использовано вместо него.

Принцип измерений - физическое явление или совокупность физических явлений, положенных в основу измерений.

Метод измерений - совокупность приёмов использования принципов и средств измерений.

Метод измерения должен по возможности иметь минимальную погрешность и способствовать исключению систематических погрешностей или переводу их в разряд случайных.

47) Понятия управления качеством продукции

 

Под управлением качеством продукции понимают постоянный, планомерный, целеустремленный процесс воздействия на всех уровнях на факторы и условия, обеспечивающий создание продукции оптимального качества и полноценное ее использование1.

До недавнего времени при решении проблем качества предприятия ориентировались на технический уровень качества продукции без учета потребностей рынка.

Вместе с тем, следует отметить, что отечественная система управления качеством внесла существенный вклад в развитие подходов к управлению качеством продукции во всем мире. В этом вопросе отечественный опыт учтен при разработке международных стандартов по системам качества.

Система качества, регламентированная международным стандартом ИСО 9004, охватывает весь жизненный цикл изделия от проектирования до утилизации и распространяется на такие элементы системы, как маркетинг, материально-техническое обеспечение, сбыт, обслуживание.

Системный подход к управлению качеством продукции предполагает четкое взаимодействие всех отделов и органов управления предприятием.

Система управления качеством продукции представляет собой совокупность управленческих органов и объектов управления, мероприятий, методов и средств, направленных на установление, обеспечение и поддержание высокого уровня качества продукции. Система управления качеством продукции включает следующие функции:

1. Функции стратегического, тактического и оперативного управления.

2. Функции принятия решений, управляющих воздействий, анализа и учета, информационно-контрольные.

3. Функции специализированные и общие для всех стадий жизненного цикла продукции.

4. Функции управления по научно-техническим, производственным, экономическим и социальным факторам и условиям.

В соответствии с международными стандартами ИСО серии 9000 выделяются политика в области качества и непосредственно система качества, включающая обеспечение, улучшение и управление качеством продукции.

Политика в области качества может быть сформулирована в виде направления деятельности или долгосрочной цели и может предусматривать:

· улучшение экономического положения предприятия;

· расширение или завоевание новых рынков сбыта;

· достижение технического уровня продукции, превышающего уровень ведущих фирм;

· ориентацию на удовлетворение требований потребителей определенных отраслей или регионов;

· освоение изделий, функциональные возможности которых реализуются на новых принципах;

· улучшение важнейших показателей качества продукции;

· снижение уровня дефектности изготавливаемой продукции;

· увеличение сроков гарантии на продукцию;

· развитие сервиса.

Всеобщее (тотальное) управление качеством (TQC), осуществляемое фирмами Западной Европы, США и Японии, предполагает три обязательных условия.

1. Качество как основная стратегическая цель деятельности признается высшим руководством фирм. При этом устанавливаются конкретные задачи и выделяются средства для их решения. Поскольку требования к качеству определяет потребитель, не может существовать такого понятия, как постоянный уровень качества. Качество должно постоянно возрастать, ибо качество -это постоянно меняющаяся цель.

2. Мероприятия по повышению качества должны затрагивать все подразделения без исключения. Опыт показывает, что 80-90% мероприятий не контролируется отделами качества и надежности. Особое внимание уделяется повышению качества на таких этапах, как НИОКР, что обусловлено резким сокращением срока создания новых изделий.

3. Не прекращающийся процесс обучения (ориентирован на определенное рабочее место) и повышение мотивации персонала.

Современное развитие системы управления качеством получило в результате перехода от тотального управления качеством (TQC) к тотальному менеджменту качества (TQM).

Если TQC - это управление качеством с целью выполнения установленных требований, то TQM - еще и управление целями и самими требованиями. В TQM также включается и обеспечение качества, которое трактуется как система мер, вызывающая у потребителя уверенность в качестве продукции.

Система TQM является комплексной системой, ориентированной на постоянное улучшение качества, минимизацию производственных затрат и поставку точно в срок. Основная идеология TQM базируется на принципе - улучшению нет предела. Применительно к качеству действует целевая установка - стремление к "0 дефектов", к "0 непроизводительных затрат", к поставкам точно в срок. При этом осознается, что достичь этих пределов невозможно, однако необходимо постоянно к этому стремиться и не останавливаться на достигнутых результатах. Эта идеология имеет специальный термин - "постоянное улучшение качества" (quality improvement).

В системе TQM используются методы управления качеством, адекватные целям. Одними из ключевых особенностей системы являются использование коллективных форм и методов поиска, анализа и решения проблем, постоянное участие в улучшении качества всего коллектива.

Особое место в мировой практике управления качеством продукции занимают кружки качества как форма привлечения работников предприятия к осознанному участию в процессе повышения качества продукции, имиджа фирмы и собственного благополучия. Кружки качества впервые появились в Японии в 1962 г. и стали важным фактором повышения качества и конкурентоспособности продукции, что в значительной мере способствовало выдвижению Японии в число лидеров на мировом рынке товаров. С конца 70-х гг. движение по созданию кружков качества приняло массовый характер во многих странах мира (Венгрия, США, Франция, ФРГ, Швеция, Югославия и др.). Их широкому распространению способствовала активная пропаганда, многочисленные публикации, устройство конференций и семинаров.

Кружок качества - это небольшая группа (от 3 до 12 человек) рабочих или служащих одного производственного подразделения, которые регулярно (один раз в неделю) собираются и в течение часа (в рабочее или нерабочее время) обсуждают проблемы, возникшие в их работе. Коллективными силами под руководством лидера находят пути решения производственных задач и сами претворяют их в жизнь или с помощью специалистов.

Основными целями кружков качества являются:

· содействие вкладу в рост и развитие компании;

· создание атмосферы, в которой проявляется уважение к каждому члену трудового коллектива;

· активизация использования человеческого фактора.

В последние годы в развитых странах усилилось влияние общества на предприятия, а предприятия стали все больше учитывать интересы общества. Это привело к появлению стандартов ИСО 14000, устанавливающих требования к системам качества с точки зрения защиты окружающей среды и безопасности продукции.

Сертификация систем качества на соответствие стандартам ИСО 14000 становится не менее популярной, чем на соответствие стандартам ИСО 9000. Существенно возросло влияние гуманистической составляющей качества. Усиливается внимание руководителей предприятий к удовлетворению потребностей своего персонала.

51) Обязательная сертификация

Обязательная сертификация — подтверждение соответствия продукции или услуг обязательным требованиям по безопасности, охране окружающей среды и здоровья граждан, осуществленное в компетентных органах. Обязательные требования устанавливаются техническими регламентами и государственными стандартами. Осуществляется обязательная сертификация в одной из систем обязательной сертификации. Например, в системе сертификации ГОСТ Р. И сводится к установлению соответствия продукции (услуг) обязательным требованиям стандартов. Соответствие другим требованиям стандартов в ее процессе не устанавливается.

Не избежать сертификации, если товар входит в «Единый перечень продукции, подлежащей обязательной сертификации», Постановление № 982 от 1 декабря 2009 г., (вступивший в силу 15.02.2010). Продукцию (услуги), сертификация которой обязательна, производить и реализовывать на территории России возможно только при наличии соответствующего сертификата.

Можно выделить три основных вида обязательной сертификации:

  1. В системе ГОСТ Р, с выдачей сертификата соответствия на продукцию (на желтом бланке).
  2. По требованиям пожарной безопасности, с выдачей пожарного сертификата (обязательна также для всех товаров, проходящих таможню — подтверждает безопасность груза).
  3. Санитарная (гигиеническая) сертификация, с выдачей санитарно-гигиенического сертификата (заключения) на продукцию или услуги.

Формой обязательной сертификации является также декларирование продукции. В обязательном порядке оно проводится в отношении товаров, входящих в «Единый перечень продукции, подтверждение соответствия которой осуществляется в форме принятия декларации о соответствии». Более того, стоит отметить, что многое из того, что раньше подлежало обязательной сертификации — продукты питания, парфюмерия, косметика, одежда и обувь (кроме детской) — теперь подлежит именно декларированию.

В отношении импортируемой продукции действуют «Правила ввоза на таможенную территорию Российской Федерации продукции, подлежащей обязательному подтверждению соответствия» (утвержденные постановлением Правительства РФ от 7 февраля 2008 г. № 53). Ввоз такой продукции на территорию РФ осуществляется также в соответствии с положениями статьи 29 Федерального закона от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании «.

После получения сертификата соответствия его держатель обязан:

  • обеспечивать соответствие выпускаемой (поставляемой) продукции обязательным требованиям безопасности (в том числе — пожарной, санитарной и экологической, в зависимости от вида продукции);
  • указывать в сопроводительной технической документации к продукции и при маркировке товаров, прошедших обязательную сертификацию — сведения о полученном сертификате соответствия обязательным требованиям безопасности;
  • предъявлять полученный сертификат соответствия требованиям безопасности в органы государственного контроля (надзора), а также всем заинтересованным лицам (поставщикам, контрагентам и т.д.);
  • приостанавливать или прекращать производство и реализацию продукции в случаях завершения срока действия сертификата, временного приостановления (прекращения) его действия;
  • извещать орган по сертификации, проводивший обязательную сертификацию — обо всех изменениях, вносимых в техническую документацию на сертифицированную продукцию, а также об изменениях в технологических процессах производства данной продукции.

За нарушение правил обязательной сертификации ответственные лица предприятий несут уголовную, административную и гражданско-правовую ответственность. Так, к уголовной ответственности может быть привлечено ответственное лицо предприятия в случае производства, хранения, перевозки или сбыта продукции, не отвечающей требованиям безопасности жизни и здоровья граждан.

Реализация продукции, подлежащей обязательной сертификации, на территории России возможна только при наличии соответствующего сертификата. Производство и реализация такой продукции отечественного и иностранного происхождения без сертификата безопасности — незаконна. Реклама продукции, подлежащей обязательной сертификации, но не имеющей необходимого



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: