Разложение некоторых функций в ряд Маклорена




· ex=∑n=0∞xnn!=1+x+x22!+x33!+…

· cosx=∑n=0∞(−1)nx2n(2n)!=1−x22!+x44!−x66!+…

· sinx=∑n=0∞(−1)nx2n+1(2n+1)!=x−x33!+x55!−x77!+…

· coshx=∑n=0∞x2n(2n)!=1+x22!+x44!+x66!+…

· sinhx=∑n=0∞x2n+1(2n+1)!=x+x33!+x55!+x77!+…

 

43. Достаточное условие разложимости функции в ряд Маклорена.

Сформулируем понятие многочлена Тейлора, запишем теорему о сумме ряда Тейлора.

Разберем задачу, которая является противоположной той, которая была расмотрена ранее. Предположим, что функция в т. . Допустим, функция является бесконечно дифференцируемой, если , при этом следовательно для нее ряд Маклорена будет таким:

 

.

 

Если , то его сумма . Определим каковы должны быть условия, чтобы

О: В качестве многочлена Тейлора степени понимают частичную сумму

 

 

Остаточный член ряда Тейлора есть

 

(30.8)

 

Т: Если требуется, чтобы бесконечно дифференцируемая в т. была представлена в качестве суммы составленного для нее ряда Тейлора (30.6), необходимо и достаточно выполнение следующго условия

 

.

 

В соответствии с определением сходящегося ряда и используя выражение (30.8), запишем такую цепочку:

 

- сумма (30.6)

.

 

Представим запись остаточного члена, выраженного в форме Лагранжа:

 

(30.9)

 

в данном случае располагается между и .

 

44. Однородные дифференциальные уравнения первого порядка.

На данном уроке мы рассмотрим так называемые однородные дифференциальные уравнения первого порядка. Наряду с уравнениями с разделяющимися переменными и линейными неоднородными уравнениями этот тип ДУ встречается практически в любой контрольной работе по теме диффуров. Если Вы зашли на страничку с поисковика или не очень уверенно ориентируетесь в дифференциальных уравнениях, то сначала настоятельно рекомендую проработать вводный урок по теме – Дифференциальные уравнения первого порядка. Дело в том, что многие принципы решения однородных уравнений и используемые технические приемы будут точно такими же, как и для простейших уравнений с разделяющимися переменными.

В чём отличие однородных дифференциальных уравнений от других типов ДУ? Это проще всего сразу же пояснить на конкретном примере.

Пример 1

Решить дифференциальное уравнение

Решение:
Что в первую очередь следует проанализировать при решении любого дифференциального уравнения первого порядка? В первую очередь необходимо проверить, а нельзя ли сразу разделить переменные с помощью «школьных» действий? Обычно такой анализ проводят мысленно или пытаются разделить переменные на черновике.

В данном примере переменные разделить нельзя (можете попробовать поперекидывать слагаемые из части в часть, повыносить множители за скобки и т.д.). Кстати, в данном примере, тот факт, что переменные разделить нельзя, достаточно очевиден ввиду наличия множителя .

Возникает вопрос – как же решить этот диффур?

Нужно проверить, а не является ли данное уравнение однородным? Проверка несложная, и сам алгоритм проверки можно сформулировать так:

В исходное уравнение:

вместо подставляем , вместо подставляем , производную не трогаем:

Буква лямбда – это некоторый абстрактный числовой параметр, дело не в самих лямбдах, и не в их значениях, а дело вот в чём:

Если в результате преобразований удастся сократить ВСЕ «лямбды» (т.е. получить исходное уравнение), то данное дифференциальное уравнение является однородным.

Очевидно, что лямбды сразу сокращаются в показателе степени:

Теперь в правой части выносим лямбду за скобки:

Обе части уравнения можно сократить на эту самую лямбду:

В результате все лямбды исчезли как сон, как утренний туман, и мы получили исходное уравнение.

Вывод: Данное уравнение является однородным

 

45. Уравнения в полных дифференциалах.

Помимо дифференциальных уравнений с разделяющимися переменными, однородных уравнений и линейных неоднородных уравнений первого порядка, в практических задачах время от времени встречаются так называемые уравнения в полных дифференциалах. Да, конечно, ДУ в полных дифференциалах не такой частый гость в контрольных заданиях. Но освоить этот вид уравнений крайне важно, так как приёмы решения, о которых пойдет речь на данном уроке, потребуются при вычислении двойных, тройных, криволинейных интегралов, а также в ряде задач комплексного анализа.

Дифференциальные уравнения в полных дифференциалах – вещь довольно простая, вы даже удивитесь, насколько прозрачен и доступен алгоритм решения. Что необходимо знать, для того чтобы разобраться в этих диффурах? Во-первых, нужно ориентироваться в базовых понятиях темы, ответьте прямо сейчас на несколько простейших вопросов:

– Что такое дифференциальное уравнение?
– Что значит решить дифференциальное уравнение?
– Что такое общее решение, общий интеграл, частное решение?

В том случае, если возникло малейшее недопонимание терминов, или вы недавно столкнулись с диффурами и являетесь чайником, пожалуйста, начните с урока Дифференциальные уравнения первого порядка. Примеры решений. Согласитесь, плохо быть в неважной форме.

Во-вторых, необходимо уверенно находить частные производные. Всё будет крутиться вокруг них. Счастливые студенты, которые избежали плотного знакомства с частными производными на первом курсе, будут вынуждены добавить их в свои друзья, поскольку без навыков нахождения частных производных читать дальше просто нет смысла.

С любимых незабываемых частных производных и начнём.

Рассмотрим функцию двух переменных:

Такая вот простенькая функция.

Требуется найти частные производные первого порядка , и составить полный дифференциал .

В контексте данного урока я поменяю букву «зет» на букву «эф»:

Дана функция двух переменных . Требуется найти частные производные первого порядка , и составить полный дифференциал .

Зачем потребовалась смена буквы? Традиционно сложилось, что в рассматриваемой теме в ходу буква . Кроме того, частные производные первого порядка будем чаще обозначать значками . Как мы помним из вводного урока про дифференциальные уравнения первого порядка, в диффурах «не в почёте» обозначать производную штрихом.

Решаем нашу короткую задачку.

Найдем частные производные первого порядка:


Полный дифференциал составим по формуле:
, или, то же самое:

В данном случае:

Пример 1

Решить дифференциальное уравнение

Не ожидали? =)

Но самое забавное, что уже известен ответ: , точнее, надо еще добавить константу:
Общий интеграл является решением дифференциального уравнения .

Таким образом, дифференциальное уравнение является полным дифференциалом функции . Отсюда и название разновидности ДУ – уравнения в полных дифференциалах.

 

46. Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли.

На данном уроке мы рассмотрим алгоритм решения третьего типа дифференциальных уравнений, который встречается практически в любой контрольной работе – линейные неоднородные дифференциальные уравнения первого порядка. Для краткости их часто называют просто линейными уравнениями. Материал не представляет особых сложностей, главное, уметь уверенно интегрировать и дифференцировать.

Начнем с систематизации и повторения.

На что в первую очередь следует посмотреть, когда вам предложено для решения любое дифференциальное уравнение первого порядка? В первую очередь необходимо проверить, а нельзя ли у данного диффура разделить переменные? Если переменные разделить можно (что, кстати, далеко не всегда очевидно), то нужно использовать алгоритмы и приемы решения, которые мы рассмотрели на первом уроке – Дифференциальные уравнения первого порядка. Советую посетить этот урок чайникам и всем читателям, которые чувствуют, что их знания и навыки в теме пока не очень хороши.

Если переменные в ДУ разделить не удалось, переходим к следующему этапу – проверяем, а не является ли уравнение однородным? Проверку обычно выполняют мысленно или на черновике, с самим алгоритмом проверки и образцами решения однородных уравнений можно ознакомиться на втором уроке – Однородные дифференциальные уравнения первого порядка.

Если переменные разделить не удалось, и уравнение однородным не является, то в 90% случаев перед вами как раз линейное неоднородное уравнение первого порядка.

Линейное уравнение первого порядка в стандартной записи имеет вид:

Что мы видим?
1) В линейное уравнение входит первая производная .
2) В линейное уравнение входит произведение , где – одинокая буковка «игрек» (функция), а – выражение, зависящее только от «икс».
3) И, наконец, в линейное уравнение входит выражение , тоже зависящее только от«икс». В частности, может быть константой.

Примечание: разумеется, в практических примерах эти три слагаемых не обязаны располагаться именно в таком порядке, их спокойно можно переносить из части в часть со сменой знака.

Перед тем, как перейти к практическим задачам, рассмотрим некоторые частные модификации линейного уравнения.

– Как уже отмечалось, выражение может быть некоторой константой (числом), в этом случае линейное уравнение принимает вид:

– Выражение тоже может быть некоторой константой , тогда линейное уравнение принимает вид: . В простейших случаях константа равна +1 или –1, соответственно, линейное уравнение записывается еще проще: или .

– Рядом с производной может находиться множитель , зависящий только от «икс»: – это тоже линейное уравнение.

Дифференциальное уравнение Бернулли имеет вид:

Очевидно – уравнение Бернулли по общей структуре напоминает линейное неоднородное уравнение первого порядка.

Характерным признаком, по которому можно определить уравнения Бернулли, является наличие функции «игрек» в степени «эн»: .

Если или , то уравнение Бернулли превращается в уравнения, которые вы уже должны уметь решать.

Целая степень может быть как положительной, так и отрицательной (во втором случае получится дробь), кроме того, может быть обыкновенной дробью, например .

Как и линейное неоднородное уравнение первого порядка, уравнение Бернулли может приходить на новогодний утренник в разных костюмах. Волком:

Зайчиком:

Или белочкой:

Важно, чтобы в уравнении присутствовал персонаж, который, как я только что показал, иногда может маскироваться под корень.

Обратите внимание, что одним из очевидных решений уравнения Бернулли (если ) является решение: . Действительно, если найти и подставить в уравнения рассмотренных типов, то получится верное равенство. Как отмечалось в статье об однородных уравнениях, если по условию требуется найти только частное решение, то функция по понятной причине нас не колышет, но вот когда требуется найти общее решение/интеграл, то необходимо проследить, чтобы эту функцию не потерять!

Все популярные разновидности уравнения Бернулли я принёс в большом мешке с подарками и приступаю к раздаче. Развешивайте носки под ёлкой.

Пример 1

Найти частное решение дифференциального уравнения, соответствующее заданному начальному условию.
,

Наверное, многие удивились, что первый подарок сразу же извлечён из мешка вместе с задачей Коши. Это не случайность. Когда для решения предложено уравнение Бернулли, почему-то очень часто требуется найти частное решение. По своей коллекции я провёл случайную выборку из 10 уравнений Бернулли, и общее решение (без частного решения) нужно найти всего в двух уравнениях. Но, собственно, это мелочь, поскольку общее решение придётся искать в любом случае.

 

47. Общее решение однородного дифференциального уравнения с постоянными коэффициентами (для уравнений второго порядка).

Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не понимаете, что это такое), то рекомендую начать с урока Дифференциальные уравнения первого порядка. Примеры решений. Многие принципы решения и базовые понятия диффуров первого порядка автоматически распространяются и на дифференциальные уравнения высших порядков, поэтому очень важно сначала разобраться с уравнениями первого порядка.

У многих читателей может быть предубеждение, что ДУ 2-го, 3-го и др. порядков – что-то очень трудное и недоступное для освоения. Это не так. Научиться решать диффуры высшего порядка вряд ли сложнее, чем «обычные» ДУ 1-го порядка. А местами – даже проще, поскольку в решениях активно используется материал школьной программы.

Наиболее популярны дифференциальные уравнения второго порядка. В дифференциальное уравнение второго порядка обязательно входит вторая производная и не входят производные более высоких порядков:

Следует отметить, что некоторые из малышей (и даже все сразу) могут отсутствовать в уравнении, важно, чтобы дома был отец . Самое примитивное дифференциальное уравнение второго порядка выглядит так:

Дифференциальные уравнения третьего порядка в практических заданиях встречаются значительно реже, по моим субъективным наблюдениям в Государственную Думу они бы набрали примерно 3-4% голосов.

В дифференциальное уравнение третьего порядка обязательно входит третья производная и не входят производные более высоких порядков:

Самое простое дифференциальное уравнение третьего порядка выглядит так: – папаша дома, все дети на прогулке.

Аналогичным образом можно определить дифференциальные уравнения 4-го, 5-го и более высоких порядков. В практических задачах такие ДУ проскакивают крайне редко, тем не менее, я постараюсь привести соответствующие примеры.

Дифференциальные уравнения высших порядков, которые предлагаются в практических задачах, можно разделить на две основные группы.

1) Первая группа – так называемые уравнения, допускающие понижение порядка. Налетайте!

2) Вторая группа – линейные уравнения высших порядков с постоянными коэффициентами. Которые мы начнем рассматривать прямо сейчас.

 

Линейные дифференциальные уравнения второго порядка
с постоянными коэффициентами

В теории и практике различают два типа таких уравнений – однородное уравнение и неоднородное уравнение.

Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
, где и – константы (числа), а в правой части – строго ноль.

Неоднородное ДУ второго порядка с постоянными коэффициентами имеет вид:
, где и – константы, а – функция, зависящая только от «икс». В простейшем случае функция может быть числом, отличным от нуля.

Какая мысль приходит в голову после беглого взгляда? Неоднородное уравнение кажется сложнее. На этот раз первое впечатление не подводит!

Кроме того, чтобы научиться решать неоднородные уравнения необходимо уметь решать однородные уравнения. По этой причине сначала рассмотрим алгоритм решения линейного однородного уравнения второго порядка:

Для того чтобы решить данное ДУ, нужно составить так называемое характеристическое уравнение:

По какому принципу составлено характеристическое уравнение, отчётливо видно:
вместо второй производной записываем ;
вместо первой производной записываем просто «лямбду»;
вместо функции ничего не записываем.

– это обычное квадратное уравнение, которое предстоит решить.

Существуют три варианта развития событий. Они доказаны в курсе математического анализа, и на практике мы будем использовать готовые формулы.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: