Интерполяционный многочлен Лагранжа-Сильвестра.




Случай № 1.

Пусть дана . Рассмотрим первый случай: характеристический многочлен имеет ровно n корней, среди которых нет кратных, т.е. все собственные значения матрицы А различны, т.е. , Sp A – простой. В этом случае построим базисные многочлены lk(x):

.

Пусть f(x) – функция, определенная на спектре матрицы А и значениями этой функции на спектре будут . Надо построить .

Построим:

.

Обратим внимание, что .


Пример: Построить интерполяционный многочлен Лагранжа-Сильвестра для матрицы .

Построим базисные многочлены:

Тогда для функции f(x), определенной на спектре матрицы А, мы получим:

.

Возьмем , тогда интерполяционный многочлен

.

Случай № 2.

Характеристический многочлен матрицы А имеет кратные корни, но минимальный многочлен этой матрицы является делителем характеристического многочлена и имеет только простые корни, т.е. . В этом случае интерполяционный многочлен строится так же как и в предыдущем случае.

 

Случай № 3.

Рассмотрим общий случай. Пусть минимальный многочлен имеет вид:

,

где m1+m2+…+ms=m, deg r(x)<m.

Составим дробно-рациональную функцию:

и разложим ее на простейшие дроби.

Обозначим: . Умножим (*) на и получим

где – некоторая функция, не обращающаяся в бесконечность при .

Если в (**) положить , получим:

Для того, чтобы найти ak3 надо (**) продифференцировать дважды и т.д. Таким образом, коэффициент aki определяется однозначно.

После нахождения всех коэффициентов вернемся к (*), умножим на m(x) и получим интерполяционный многочлен r(x), т.е.

.

Пример: Найти f(A), если , где t – некоторый параметр,

.

Найдем минимальный многочлен матрицы А:

.

Проверим, определена ли функция на спектре матрицы А

Умножим (*) на (х-3)

при х=3

Þ

Умножим (*) на (х-5)

.

Таким образом, - интерполяционный многочлен.

Пример 2.

Если , то доказать, что

Найдем минимальный многочлен матрицы А:

- характеристический многочлен.

d2(x)=1, тогда минимальный многочлен

.

Рассмотрим f(x)=sin x на спектре матрицы:

Þ функция является определенной на спектре.

Умножим (*) на

Þ .

Умножим (*) на :

.

Вычислим g, взяв производную (**):

. Полагая ,

, т.е. .

Итак, ,

,

,

.

ЧТД.

Пример 3.

Пусть f(x) определена на спектре матрицы, минимальный многочлен которой имеет вид . Найти интерполяционный многочлен r(x) для функции f(x).

Решение: По условию f(x) определена на спектре матрицы А Þ f(1), f’(1), f(2), f ‘(2), f ‘’ (2) определены.

.

.

Используем метод неопределенных коэффициентов:

Если f(x)=ln x

f(1)=0 f’(1)=1

f(2)=ln 2 f’(2)=0.5 f’’(2)=-0.25


Простые матрицы.

Пусть матрица , так как С алгебраически замкнутое поле, то характеристический многочлен , где , ki – алгебраическая кратность корня .

Обозначим множество векторов удовлетворяющих собственному значению - подпространство, , где r – ранг матрицы .

 

Теорема. Если квадратная матрица А имеет собственное значение , а матрица имеет , то имеет кратность .

 

DF. Размерность называется геометрической кратностью собственного значения .

 

В свете этого определения теорема переформулируется следующим образом:

 

Теорема. Алгебраическая кратность собственного значения не меньше его геометрической кратности.

 

DF. Матрица называется простой, если аглебраическая кратность каждого ее собственного значения совпадает с его геометрической кратностью.

 

Из линейной алгебры следует, что матрица простая тогда и только тогда, когда .

Если матрица А простая, тогда существует n линейно независимых собственных векторов x1, x2, …,xn таких, что , для . Запишем это равенство в матричном виде:

, т.е. А – простая тогда и только тогда, когда и .

 

Замечание. Обратим внимание на то, что собственные значения А и А’ совпадают. Действительно, собственные значения для А’ это значения . Таким образом характеристические многочлены матриц совпадают. Размерность , тогда . Поэтому, если - собственное значение матрицы А, то и является собственным значением матрицы А’, т.е. существует , что (*) или . Транспонируем (*) и получим (транспонируем это равенство). В этом случае называют левым собственным вектором матрицы А. Соответственно, - называют правым собственным подпространством, - называют левым собственным подпространством.

Рассмотрим следующую конструкцию: если матрица А простая, то существует n линейно независимых собственных векторов x1, x2, …, xn и существует n линейно независимых собственных векторов y1, y2,…,yn, где x1, x2, …, xn такие, что , (1); y1, y2,…,yn такие, что (2), .

Запишем равенство (1) в виде (3) Þ что, если А – простая, то существуют матрицы X и Y, что или (**).

 

DF. Множества векторов x1, x2, …, xn и y1, y2,…,yn удовлетворяющие условию , т.е. называются квазиортогональными.

 

Учитывая равенство (**) и определение делаем вывод: множества левых и правых собственных векторов простой матрицы А квазиортогональны и .

 

Очень важной для матриц является следующая теорема:

 

СПЕКТРАЛЬНАЯ ТЕОРЕМА. Если А – простая матрица порядка n над полем С и p(x) многочлен из кольца C[x], и x1, x2, …, xn и y1, y2,…,yn – множества правых и левых собственных векторов матрицы А, то , а сопутствующая матрица , где .

 

Следствие. Сопутствующие матрицы обладают следующими свойства:

1.

2.

3.

Пример. Показать, что матрица простая. Найти сопутствующие матрицы для матрицы А и использовать их для А20, p(x)=x20.

Решение:

Þ

существуют 2 линейно независимые правые и левые системы собственных векторов.

Найдем правые собственные векторы:

Найдем левые собственные векторы:

Найдем сопутствующие матрицы:

.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: