Найдем частные производные




Решение.

По правилам дифференцирования дроби получим

 

б) .

 

Решение.

По правилам дифференцирования произведения получим

 

в)

 

Решение.

Дифференцируем как сложную функцию.

 

 

г) . Это неявная функция.

 

 

Решение.

, , .

Задача 6. С помощью правила Лопиталя вычислить пределы функций:

1) .

Решение.

Непосредственная подстановка х = 0 приводит к неопределенности вида , следовательно, можно применить правило Лопиталя: заменить предел отношения функций пределом отношения их производных.

 

2)

 

Решение.

При получим неопределенность вида , когда можно применить правило Лопиталя.

Задача 7. Исследовать функцию и построить ее график.

Решение.

 

Исследование выполним по примерной схеме, имеющейся в учебниках и практических руководствах. График можно строить либо по ходу исследования, либо конце исследования (рис.2).

1) Область определения функции . 2) Найдем точки пересечения графика функции с осями координат. Пусть , тогда . Пусть , тогда или . Значит, график функции проходит через начало координат. 3) Проверить является ли функция четной, нечетной, общего вида. . Функция общего вида. 4) Найти асимптоты графика функции (вертикальные, наклонные, горизонтальные).    

Вертикальная асимптота может быть в точке разрыва или на границе области определения. Здесь вертикальная асимптота . , - предел слева в точке ; - предел справа. Наклонные асимптоты вида Найдем, если существуют конечные пределы и .

Здесь

Итак, - уравнение наклонной асимптоты.

 

5) Найти интервалы монотонности (возрастания и убывания) функции и точки экстремума.

Найдем производную первого порядка.

Найдем критические точки первого рода и выясним знаки на полученных интервалах в окрестности критических точек. Критические точки: х1 = 0, х2 = 3, х3 = 1 - последняя н входит в область определения функции. Используя достаточные признаки экстремума, выясним, как меняет знак при переходе через критические точки слева направо. Возьмем непрерывный интервал , содержащий точку .

; . Так как при переходе через точку производная знак не имеет, то функция монотонно возрастает и не является точкой экстремума.

Возьмем интервал , содержащий точку х = 3.

; . Здесь производная меняет знак с «-» на «+», значит, х =3 – точка минимума функции .

Итак, функция возрастает на интервалах и , убывает на интервале (1;3).

 

6) Найти интервалы выпуклости и вогнутости графика функции и точки перегиба.

Вычислим производную второго порядка и найдем критические точки второго рода.

Критические точки второго рода, при которых в нуль или существует, такие , , но эта последняя не входит в область определения функции. Остается точка х = 0. Проверим меняет ли знак при переходе через эту точку. Возьмем интервал (-1; ), содержащий точку х = 0. Вычислим , . Отсюда следует, что х = 0 – точка перегиба, . . Отсюда следует, что - интервал выпуклости; , - интервалы вогнутости кривой.

 

Задача 8. Три пункта А.В. и С расположены так, что угол АВС (рис.3) равен 600. Расстояние между пунктами А и В равно 200 км. Одновременно из пункта А выходит автомобиль, а из пункта В – поезд. Автомобиль движется по направлению к пункту В со стороны 80 км/ч, а поезд движется по направлению к пункту С со скоростью 50 км/ч. Через скорость времени расстояние между автомобилем и поездом будет наименьшим?

Решение.

Пусть t-время, через которое, поле начала движения автомобиля и поезда, расстоянием MN = s между ними будет наименьшими. По теореме косинусов для треугольника MBN запишем равенство H0 MB = 200 – 80t, NB = 50t, cos600 = .  

рис. 3.

 

 

Тогда получим уравнение ;

км.

Отсюда . Найдем первую производную по t:

. Приравнивая первую производную к нулю получим откуда или - критическая точка.

Квадратный трехчлен под корнем в знаменателе в ноль не обращается ни при каких действительных значениях t, поскольку его дискриминант Д .

Легко видеть, что при переходе через критическую точку t0 от меньших значений t к большим, например, от t = 1 до t = 2, первая производная меняет знак с минуса на плюс . Следовательно, t0 = 1.6279 часа – точка минимума функции s. А так как других экстремумов эта функция не имеет, то в точке минимума функция имеет наименьшее значение: .

 

Задача 9. Найти частные производные и полный дифференциал функции

двух независимых переменных:

а)

Решение.

Найти частные производные ; . Составим полный дифференциал по формуле .

Получим .

б) .

Решение.

Найдем частные производные

.

Составим полный дифференциал

.

 

Задача 10. Найти экстремум функции

Решение.

Найдем частные производные:

и смешанную производную .

Необходимое условие экстремума: и

Решим систему уравнений x = 2y, 4y – y = -9, y = -3

x = -9

Итак, точка P(-9; -3) критическая точка. Составим выражение и вычислим его значение в критической точке P(-9; -3). Тогда, если , то P- точка экстремума. При этом, если , то Р – точка минимума,

а если , то Р – точка максимума,

Если , экстремума нет, а если - экстремум может быть, а может не быть. Нужны дополнительные исследования.

Установим характер экстремума в точке P(-9; -3).

, следовательно, P(-9; -3)- точка экстремума, а так как независимо от координат точки Р, то P(-9; -3) – точка минимума данной функции.

 

Задача 11. Найти неопределенные интегралы а) , б) ,

в) , г) , д) .

Предлагаемые интегралы можно, применив основные методы

интегрирования; метод замены переменной подстановка, метод

интегрирования по частям.

Решение.

а) ;

Подстановка: . Найдем дифференциалы обеих частей подстановки

или . Произведем замену переменной в подынтегральном выражении и найдем интеграл .

б) .

В первом из интегралов, стоящих справа, введем подстановку . откуда или . Таким образом, .

Второй интеграл справа является табличным .

Итак, , где , две произвольные постоянные суммы неопределенных интегралов объединяют в одну.

в)

Подстановка:

Получим табличный интеграл типа . Возвращаясь к прежней переменной, будем иметь .

г) . Найдем его методом интегрирования по частям по формуле .

Примем , .

В первом из этих двух равенств обе части дифференцируем, чтобы найти , а во втором интегрируем, чтобы найти . Получим , (здесь произвольную постоянную интегрирования принимаем равной нулю, поскольку достаточно хотя бы одного значения ).

Применив формулу интегрирования по частям, получим

.

д) . Это интеграл от рациональной функции. Разложим подынтегральную функцию на простейшие дроби по известному правилу, предварительно разложив знаменатель дроби на множители . Тогда , где A, B, M, N – неопределенные коэффициенты, которые надо найти. Приведя обе части последнего равенства к общему знаменателю, найдем

.

Такое равенство отношений с одинаковыми знаменателями возможны только в случае равенства числителей, то есть .

Приравнивая коэффициенты при x в одинаковых степенях в левой и правой частях последнего равенства, получим систему уравнений

Решение системы:

Переходим к интегрированию

!! .

Приведем две задачи геометрического характера, связанные с вычислениями определенного интеграла.

 

Задача 12. Вычислить площадь фигуры, ограниченной линиями ,

, (рис.2)

  Решение. Фигура ОМА (рис.4) ограниченная данными линиями, состоит из двух частей ОМВ и ВМА, представляющих собою частные случаи криволинейных трапеций, ограниченных сверху кривой на и примой на . Таким образом искомая площадь вычисляется с помощью определенного интеграла как сумма двух площадей по формуле

рис. 4.

 

Определенные интегралы вычисляются по ф>рмуле Ньютона-Лейбница . Итак, площадь ОМА равна

.

 

Задача 13. Вычислить объем тела, полученного в результате вращения

вокруг оси фигуры, ограниченной линиями , ,

, . (рис. 5).

  Решение. Объем тела вращения находим по формуле

рис. 5.

 

Задача 14. Найти частное решение дифференциального уравнения

, удовлетворяющее начальным условиям

при .

Решение.

Это уравнение первого порядка является линейным, так как это удовлетворяет общему виду линейных уравнений . Будем искать решение в виде , где , - дифференцируемые функции от . Тогда . Подставляя , в данное уравнение, получим

или .

Приравняем нулю выражение, стоящее в скобках и получим уравнение с разделяющимися переменными или , или . Интегрируя обе части уравнения, находим или (Здесь полагают произвольную постоянную равной нулю). Откуда . Подставляя его уравнение , придем к его общему уравнению с разделяющимися переменными или , или , или , откуда .

А так как решение ищется в виде , то оно будет таким . Это- общее решение, в котором - произвольная постоянная. Решим теперь задачу Коши: из общего решения по заданным начальным условиям определим частное решение. Для этого подставим в общее решение начальные условия. Получим или , или , или , откуда . Подставляя это значение постоянной в общее решение, получим частное решение удовлетворяющее начальным условиям.

Задача 15. Найти область сходимости степенного ряда .

Решение.

Область сходимости называется множество всех точек сходимости данного ряда. Найдем радиус и интервал сходимости.

.

Где . Радиус сходимости . Тогда интервал сходимости . Исследуем сходимость ряда на концах этого интервала.

1) Подставим в данный степенной ряд . Получим числовой ряд . Этот ряд является расходящимся, так как не выполняется необходимое условие его сходимости .

2) Подставляя в степенной ряд , получим знакочередующийся числовой ряд , который расходится по той же причине: его общий член при стремится к 1, а не к 0.

Итак, область сходимости данного степенного ряда .

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-07-22 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: