Пульт управления электровоза




Екатеринбургский учебный центр №1

 

 

ЭЛЕКТРОВОЗ 2ЭС6

 

Механика, двигатели, аппараты

(пособие для локомотивных бригад)

 

 

 

ЕКАТЕРИНБУРГ

Общие сведения

Механическая часть предназначена для реализации тяговых и тормозных усилий, развиваемых электровозом, размещения электрического и пневматического оборудования, обеспечения заданного уровня комфорта, удобных и безопасных условий управления электровозом.

Механическая (экипажная) часть электровоза состоит из двух секций соединенных между собой автосцепкой. Каждая секция включает в себя две двухосные тележки и кузов, связанных между собой наклонными тягами, рессорным пружинным подвешиванием типа «флейсикойл», гидродемпферами и ограничителями перемещения кузова.

На механическую часть электровоза действует нагрузка, создаваемая весом механического, электрического и пневматического оборудования. Кроме того, механическая часть передает тяговые усилия от электровоза к поезду и воспринимает динамические нагрузки, возникающие при движении электровоза по кривым и прямым участкам пути. Механическая часть должна быть достаточно прочной, а также отвечать требованиям безопасности движения и правилам технической эксплуатации железных дорог. Для обеспечения нормальной и безаварийной работы необходимо, чтобы все механическое оборудование находилось в полной исправности и отвечало нормам безопасности, прочности и правилам ремонта.

Механическая (экипажная) часть одной секции электровоза 2ЭС6 представлена на рисунке 1.

 

 

1 - автосцепка; 2 - кабина; 3 - колесная пара; 4 - букса; 5 - буксовый поводок; 6 - рама тележки; 7 - перегородка; 8 - кронштейн; 9 - наклонная тяга; 10 - крыша кузова;   11 - амортизатор; 12 - рама кузова; 13 - буксовая пружина; 14 - кузовная пружина; 15 - страховочный шкворень; 16 - кронштейн; 17 - боковая стенка; 18 - задняя стенка; 19 - переходная площадка.

Рисунок 1 - Механическая (экипажная) часть одной секции.


 

 

2 Тележка

 

Каждая секция включает в себя две двухосные тележки, на которые опирается кузов. Тележки воспринимают тяговые и тормозные усилия, боковые, горизонтальные и вертикальные силы при прохождении неровности пути и передают их, через пружинные опоры с поперечной податливостью, на раму кузова. Тележка электровоза 2ЭС6 имеет следующие технические характеристики(рисунок 2):

 

Конструкционная скорость, км/ч 120

Нагрузка от колесной пары на рельсы, кН 245

Типтягового электродвигателя ЭДП810

Тип подвески двигателя опорно-осевая

Крепление двигателя опорно-осевое с маятниковой подвеской

Тип букс одноповодковая с кассетным роликоподшипником

Рессорное подвешивание двухступенчатое

Статический прогиб, мм

буксовой ступени 58

кузовной ступени 105

Тип тормозных цилиндров ТЦР 8

Коэффициент нажатия тормозных колодок 0,6

 

Тележка состоит из сварной рамы коробчатого сечения, которая своей концевой балкой через наклонную тягу с шарнирами соединена с центральной частью рамы кузова. К средней балке рамы тележки крепятся посредством маятниковых подвесок остова тяговых электродвигателей постоянного тока, которые другими своими сторонами опираются на оси колесных пар через смонтированные на них моторно-осевые подшипники качения. Крутящий момент от тяговых электродвигателей передается на каждую ось колесной пары через двухстороннюю косозубую передачу, образующую шевронное зацепление с шестернями посаженными на хвостовики вала якоря тягового электродвигателя.

На буксовых шейках оси колесной пары смонтированы двухрядные конические роликовые подшипники закрытого типа фирмы «Тимкен», размещенные внутри корпуса бесчелюстной одноповодковой буксы. Поводки имеют сферические резинометаллические шарниры, которые посредством клиновых пазов крепятся к буксе и к кронштейну на боковинах рамы тележки, образуя продольную связь колесных пар с рамой тележки.

Поперечная связь колесных пар с рамой тележки осуществляется за счет поперечной податливости буксовых пружин. Аналогично, поперечная связь кузова с рамой тележки осуществляется за счет поперечной податливости кузовных пружин и жесткости пружин упоров-ограничителей, которые также обеспечивают возможность поворота тележки в кривых участках пути и гашения различных форм колебаний кузова на тележках. Также для гашения колебаний кузова и подрессоренных частей тележки применены вертикальные буксовые, вертикальные и горизонтальные кузовные гидравлические демпферы (гидравлические гасители колебаний).

Для торможения электровоза используется тормозная рычажная передача с применением чугунных тормозных колодок, восьмидюймовыми тормозными цилиндрами (на каждое колесо тележки) с автоматическим регулятором выхода штока.

 

2.1 Рама тележки

 

Рама тележки предназначена для передачи и распределения вертикальной нагрузки между отдельными колесными парами восприятия и передачи на раму кузова тягового усилия, тормозной силы, а также боковых, горизонтальных и вертикальных сил от колесных пар при проходе ими неровностей пути. Она служит для монтажа всех основных узлов, составляющих тележку, и предназначена для распределения статических и инерционных нагрузок от веса кузова, тяговых двигателей, тормозного оборудования на рессорное подвешивание.

 

 
 

Рама тележки, рис.-3, представляет собой цельносварную конструкцию коробчатого сечения с незамкнутой концевой частью. В комплект рамы входят две боковины 1 и 2, средняя 3 и концевая 4 балки и кронштейны 5, 6, 7 для установки элементов тормозной системы.

Верхний и боковые листы боковины рамы тележки выполнены плоскими, а нижний в центральной части имеет прогиб радиусом 350 мм. Для стыковки с концевой балкой нижний и верхний листы имеют закругление радиусом 400мм и выступ шириной 400мм. Для стыковки со средней балкой закругления радиусом 250 мм и выступ шириной 340мм.

Кроме того, на наружном продольном торце нижнего листа боковины также имеются два выступа с округлыми сторонами под установку кронштейнов тормозных цилиндров, а на его горизонтальных участках с каждой стороны устанавливаются по два круглых платика под чаши буксовых пружин. В боковых листах имеются по пять сквозных отверстий диаметром 98 мм, в которые при сборке рамы ввариваются трубы, расточенные под запрессовку в них кронштейнов для установки элементов тормозной системы. После сварки короба боковины, к ее нижней части привариваются щеки 9, имеющие клиновидные пазы для установки валиков амортизаторов двух буксовых поводков, которые впоследствии обрабатываются на раме в сборе. На верхний лист устанавливаются эллипсовидные накладки под стаканы кузовных пружин.

Средняя балка имеет также коробчатое сечение, в ее центральной части для придания конструкции необходимой жесткости вварена толстостенная труба с наружным диаметром 219 мм, по обе стороны которой с каждой стороны установлены по два кронштейна подвесок тяговых электродвигателей. Клиновидные пазы на кронштейнах унифицированы с клиновидными пазами для крепления буксовых поводков и также обрабатываются на тележке в сборе.

Концевая балка является наиболее ответственным и напряженным элементом рамы. Ее основной профиль аналогичен профилю средней балки, однако к ее передней части посередине приварен кронштейн 8 для установки наклонной тяги, образованный двумя плоскими закругленными боковыми листами и приваренными к ним сверху согнутым листом с радиусом гиба 170 мм, а к торцам толстостенной втулки с наружным диаметром 175 мм. Для изготовления рамы применены листы из стали 09Г2Д ГОСТ19281-89. При этом их толщина составляет: верхних листов боковин, средней и концевой балок –16 мм, всех нижних листов – 20 мм, боковых листов боковины и средней балки – 12 мм, боковых листов концевой балки – 16 мм, кронштейнов и платиков от 10 до 20 мм.

 

 

2.2 Блок колесно-моторный

 

На электровозе впервые применён колёсно-моторный блок с коническими моторно-осевыми подшипниками качения и двухсторонней косозубой передачей. Особенность конструкции КМБ состоит в применении единого жёсткого для двух моторно-осевых подшипников корпуса, обеспечивающего качественную регулировку подшипников при сборке, её стабильность в эксплуатации и обеспечивающего расчётную долговечность подшипников не менее 5 млн. км пробега. Вдвое повышен ресурс зубчатых колёс (до 1,8 млн. км пробега). Большое зубчатое колесо выполняется составным, венец изготавливается из стали 45 ХН с контурной закалкой ТВЧ.

Колесно-моторный блок включает в себя колесную пару, кожух зубчатой передачи, шестерни и тяговый двигатель типа ЭДП810 с опорно-осевым подвешиванием через моторно-осевые подшипники качения. Основные размеры представлены на рисунке 4.

 

2.3 Колесная пара

 

Колесная пара направляет электровоз по рельсам, передает силу тяги, развиваемую электровозом, и тормозную силу при торможениях, воспринимает статические и динамические нагрузки, возникающие между рельсом иколесом, и преобразовывает вращающий момент тягового электродвигателя в поступательное движение электровоза.

Колесная пара сосотоит из оси, колесных центров, бандажей, бандажных колец и зубчатых колес, смотри рисунок 5.

 

 

 

 

 

Рисунок 5 - Колесная пара

 

Ось колесной пары изготовлена из осевой стали, заготовка по ГОСТ 4728-96 и ее длина составляет 2450 мм. Для монтажа буксовых подшипников, колес, зубчатых колес и моторно-осевых подшипников на оси предусмотрены буксовые, предступичные, подступичные части и моторно-осевые шейки. Все поверхности, за исключением торцов, шлифованные. Центра колесных пар отлиты из стали 25Л-III ГОСТ 977-88 и статически отбалансированы путем механической обработки. На электровозе 2ЭС6 применена колесная пара с дисковым литым колесным центром. Бандаж изготовлен из специальной стали, на обод колесного центра посажен в горячем состоянии, для предупреждения сползания застопорен бандажным кольцом. В торцевой части оси имеются отверстия под болты для крепления торцевой шайбы.

 

2.4 Тяговая зубчатая передача

 

Зубчатая передача предназначена для передачи вращающего момента с вала якоря тягового электродвигателя на колесную пару. С целью уменьшения уровня нагрузок, действующих на элементы привода и, в первую очередь, на подшипники, на электровозе 2ЭС6 применена традиционная жесткая двухсторонняя косозубая передача с модулем 10 мм, с централью 617,5 мм, передаточным отношением 3,44 и коэффициентом перекрытия равным 2,1, ширине зубьев равной 90 мм. Два зубчатых колеса, находящихся на оси колесной пары, также как и две шестерни, посаженые на хвостовики вала якоря, образуют шевронные колеса с разнесенными полушевронами, зубчатое колесо показано на рисунке 6.

Зубчатое колесо изготовлено цельнокатанной поковкой из стали из стали 45ХН., которую подвергают объемному улучшению до твердости НБ 210-370 (по Бринеллю), после чего нарезают зубчатый венец и зубья шевенгуют. Рабочие поверхности зубьев подвергаются контурной закалке ТВЧ с последующим отпуском.

Шестерня, показана на рисунке 7, изготавливается из поковки легированной стали 12Х2Н4А или 20ХН3А с последующей цементацией на глубину 1,6…1,9 мм и с закалкой поверхности зубьев по всему контуру, включая и впадины до HRC³60. После механической и термической обработки производитсяшлифовка рабочих поверхностей зубьев и конусного отверстия. Посадка шестерен на конусные (1:10) хвостовики вала – тепловая (индукционный подогрев) с натягом 0,22…0,26 мм. Требуется контакт сопрягаемых посадочных поверхностей до площади прилегания не менее 75%.

 

 
 

 

 


Рисунок 7 – Шестерня

 

 

2.5 Кожух зубчатой передачи

 

Кожух зубчатой передачи предназначен для защиты зубчатой передачи от внешней среды и является масляной ванной для ее смазывания.

Кожух редуктора, показан на рисунке 8, состоит из двух половин и сварен из листовой стали с толщиной листов 5 мм., прикреплен к остову тягового двигателя тремя болтами М36. По горловинам кожуха со стороны тягового двигателя установлены уплотнения из трубчатой резины, а со стороны колеса – специальное уплотнение из полиуретанового материала. По стыку двух половин кожуха со стороны малой горловины установлено специальное уплотнение, а с внутренней стороны горловины – приварено кольцо для сбора масла. На ступице зубчатого колеса и крышке подшипника предусмотрены выступы, выполняющие функции маслоотбойников. Для улучшения условий смазки передачи нижняя поверхность кожуха выполнена с дополнительным резервуаром На боковине нижней половины кожуха находится карман с заправочной горловиной, закрываемой откидной крышкой. К крышке люка приварена трубка-сапун, служащая для выравнивания давления внутри кожуха с атмосферным давлением. Половины кожуха по концам стянуты двумя болтами М24, восемью болтами М12 по боковине со сторону колеса и тремя болтами М12 со стороны тягового двигателя.

 

 

2.6 Буксовый узел

 
 

 

Буксы бесчелюстные одноповодковые с роликовыми подшипниками закрытого типа фирмы «Тимкен». Через буксы на колесные пары передается вертикальная нагрузка от массы электровоза, а от колесных пар на рамы тележек- усилия тяги, торможения и боковые горизонтальные усилия. Колесные пары с рамой тележки связаны через буксовые пружины 5 и односторонние буксовые поводки. Литой корпус буксы имеет два прилива под нижние направляющие буксовых пружин 4. Внутри корпуса размещен двухрядный конический роликовый подшипник 14 закрытого типа с эластомерным уплотнением и заправленный специальной смазкой на расчетный пробег 1,4 млн.км. Подшипник устанавливается на буксовую шейку прессом с усилием 8…10т. при натяге 0,07-0,10 мм и фиксируется торцевой шайбой 4 или 5 с болтами 11, завернутыми в торец оси. Наружное кольцо подшипника закрепляется крышками букс 8 или 9, на наружных крышках букс с одной стороны устанавливается токосъемное устройство, а с другой - датчики систем регулирования тяги и систем безопасности.

Буксовые поводки имеют сферообразные резино-металлические шарниры. Оси шарниров имеют клинообразные концы, которыми поводок соединен с одной стороны с корпусом буксы, а с другой стороны с кронштейном посередине боковины рамы тележки, осуществляя тем самым продольную связь колесных пар с рамой тележки. Буксовый узел представлен на рисунке 9.

 

2.7 Буксовое подвешивание

 

 
 

Буксовое рессорное подвешивание, рисунок 10, служит для смягчения ударов, передаваемых на надрессорное строение, при прохождении электровоза по неровностям пути, и равномерного распределения нагрузок между колесными парами.

На верхние направляющие буксовых пружин 2 через резинометаллические амортизаторы 1 опирается рама тележки, причем хвостовик верхних направляющих входит в расточку нижних направляющих пружин с зазором ± 14мм, ограничивающим поперечное смещение колесной пары относительно рамы тележки с жесткостью поперечной связи 5,7 кН/мм за счет поперечной податливости буксовых пружин. При заданной осевой нагрузке 24 т на каждую буксу устанавливаются по две наружные пружины 4, а при добалансировке электровоза до осевой нагрузки 25 т, добавляются еще и по две внутренние поз.14.

Наружные буксовые пружины изготовлены из шлифованного прутка диаметром 42 мм стали 60С2ХА с поджатыми и обточенными концевыми витками. Статический прогиб пружин под расчетной нагрузкой составляет 58мм, высота пружин под нагрузкой равна 206 мм,поперечная жесткость пружины равна 1,43 кН/мм.

Внутренняя пружина изготовлена также из шлифованного прутка, прошедшего термообработку до твердости 42…48 ед.HRC с последующим упрочнением наклепом дробью. Число рабочих витков - 3, полных - 4,5. Диаметр прутка 15 мм, высота пружины в свободном состоянии 184 мм, средний диаметр витка-160 мм.

 

2.8 Подвешивание тягового электродвигателя

 

Подвешивание тягового электродвигателя, рисунок 11, электровоза опорно-осевое. Тяговый электродвигатель одним концом опирается через моторно-осевой подшипник на ось колесной пары, а другим- на раму тележки через специальную подвеску. При этом обеспечивается смягчение ударов, передающихся на тяговый электродвигатель при прохождении колесной парой неровностей пути и при трогании с места, а также возможность изменения взаимного положения тягового электродвигателя и рамы тележки при движении электровоза.


 

Подвешивание тягового двигателя к раме тележки осуществлено через поводок с резиновыми амортизаторами, унифицированный и для буксы колесной пары, один конец которого устанавливается в приваренном к раме тележки кронштейне, а второй конец в кронштейне, закрепленном на остове тягового двигателя шестью болтами М36.

Моторно-осевые подшипники качения Timken М246949-М246910, расположенными в стаканах, которые установлены в корпусе подшипников. соединенным с остовом тягового электродвигателя двенадцатью болтами М36. Корпус подшипников состоит из полутрубы U-образного сечения, согнутой из листовой стали 20-3-Т ГОСТ 1577 – 93, усиленной сварными ребрами жесткости. Полутруба для крепления к тяговому двигателю выполнена с лапами, фланцами и масленками для подвода масла к подшипникам. К фланцам корпуса подшипников шестью болтами М16 присоединены стаканы и крышки подшипников с лабиринтным уплотнением, выполненном в ступицах зубчатых колес. Между фланцами корпусов подшипников и стаканами предусмотрена установка составного кольца для регулирования осевого разбега подшипников в процессе сборки колесной пары.

 

2.9 Передача тормоза рычажная

 

Тележки электровоза оборудованы индивидуальным для каждого колеса колодочным тормозом с двухсторонним нажатием на колесо чугунных гребневых колодок (рисунок 12).

 

 

Каждое колесо обслуживается одним тормозным цилиндром диаметром 8''(203мм) типа 670В со встроенным автоматическим регулятором выхода штока (ТЦР) производства ОАО «Транспневматика» (поз.1). Рабочий ход поршня ТЦР – 100мм, максимальный выход винта регулятора относительно поршня – 200мм.

Усилие от ТЦР на колесо передается через рычажную передачу с общим передаточным отношением 8,8. Размеры плеч рычагов выбраны с таким расчетом, чтобы обеспечить равномерное распределение усилия от ТЦР между тормозными колодками, т.е. передаточное отношение к каждой колодке составляет 4,4.

Тормозные цилиндры установлены на кронштейнах с наружной стороны рамы тележки. Усилие от штока ТЦР через рычаг поз.2, вилку поз.3 и вертикальный рычаг поз.4 или поз.10 передается на башмак с тормозной колодкой поз.6, которые крепятся на подвесках поз.5 и поз.8 к кронштейнам рамы тележки. Поперечное смещение колесных пар относительно рамы тележки компенсируется зазорами в узлах крепления подвесок к раме тележки и применением конусных втулок в деталях рычажной передачи.

 

2.10 Цилиндры тормозные

 

На электровозе установлены тормозные цилиндры 670В с встроенным регулятором (рисунок 13),

 


они предназначены для создания тормозного усилия и автоматического регулирования величины хода штока в пределах, обеспечивающих постоянную величину зазора между тормозными колодками и бандажами колесных пар.

 

Технические данные:

-

Диаметр цилиндра, мм  
Ход поршня, мм  
Максимальный выход винта, мм  
Суммарный выход винта, мм  
Рабочий ход поршня, мм  
Рабочее максимальное давление, МПа 0,6
Рабочее усилие на винте не более, кгс  
Масса, кг  

 

Цилиндры состоят из двух составных частей: тормозного цилиндра и встроенного в него регулятора одностороннего действия.

Цилиндр тормозной состоит из корпуса (5),поршня (21), крышки (7). Регулятор состоит из винта (25), имеющего несамотормозящую резьбу, гаек 18 и 19. В исходном положении гайка (18) под действием пружины (17) через подшипник (39) поджата к ограничителю (11), который жестко соединен штифтом (12) с муфтой (24) и предотвращает ограничитель (11) от проворачивания при перемещении поршня (21).

Гайка (19) через кольцо (20), зафиксированное стопорным кольцом (37), под действием пружины (17) через подшипник (39) поджата к упору (4). При этом кулачки упора (4) входят в пазы кольца (20). Сухари упора (4), входящие в пазы стержня (6), свободно совершают возвратно-поступательное движение в момент торможения. Винт (25) удерживается в исходном положении пружиной (22) через стержень (6), ограничитель (11), гайку (19), кольцо (20) и упор(4). Положение винта (25) относительно тормозной рычажной передачи фиксируется фиксатором (3) с пружиной (9).

Вращению стержня во время циклов торможения и отпуска препятствует направляющая (2).

К корпусу тормозного цилиндра (5) болтами (33) прикручена крышка (7).Внутри корпуса расположен стержень (6) на который посажен поршень (21).В стержне кольцом (35) и шайбой (8) зафиксирован винт (25), на винте навернуты гайки (18 и 19) с подшипниками (39).Подшипники зафиксированы стопорными кольцами (37).На гайки воздей ствуют пружины (17). С винтом соединена муфта (24) закрытая чехлом (1), который закреплен хомутом (42),резьба муфты левая. Стержень в крышке фиксируется направляющей (2) закрытой пробкой (14). На муфте со стороны чехла навернута гайка (23) зафиксированная винтом (32), гайка фиксирует крышку (16).

После смены тормозных колодок и регулировки тормозной рычажной передачи необходимо вращением винта по часовой стрелке установить его в исходное положение, не допуская максимального выхода. Зафиксировать положение фиксатором. Провести 2-3 торможения максимальным давлением в тормозных цилиндрах и проверить положение колодок относительно бандажей колесных пар. При необходимости вращением винта установить допустимый зазор.

При нормальных зазорах между колодками и бандажами встроенный регулятор работает как жесткий стержень. Функцию жесткого стержня регулятор выполняет до увеличения зазора между колодками и бандажом.

При увеличении зазоров при торможении поршень 21 со стержнем 6 перемещают ограничитель 11, гайку 18, винт 25, гайку 19 с кольцом 20 и упор 4. При соприкосновении упора 4 с упорами крышки 7 его перемещение прекращается. Дальнейшее перемещение системы выведет кулачки упора 4 из пазов кольца 20. Гайка 19 под действием пружины 17 через подшипник 39 навертывается на винт 25. Навертывание гайки 19 на винт 25 будет происходить до касания тормозных колодок бандажа колесных пар, при этом между гайкой 19 и ограничителем 11 образуется зазор равный величине износа колодок и бандажей, а кулачки упора 4 войдут в пазы кольца 20. При отпуске поршень со стержнем под действием пружины 22 перемещаются в исходное положение. Со стержнем перемещаются муфта 24 с ограничителем 11, гайка 18, винт 25, упор 4, гайка 19 с кольцом 20. При перемещении упор 4 достигнув упоров крышки 7 остановится. Вместе с ним остановятся гайка 19 и винт 25, а стержень 6, ограничитель 11 будут продолжать свое перемещение, образуя зазор между ограничителем 11 и гайкой 18. Под действием пружины 17 гайка 18 будет навертываться на винт до соприкосновения с ограничителем. Гайки 18 и 19 поочередно навертываются на винт на величину износа колодок и бандажей. Регулятор скомпенсировал величину износа тормозных колодок и бандажей колесных пар, оставив неизменным первоначальный зазор между ними. Ход поршня тормозного цилиндра остается неизменным, изменился выход винта. При достижении выхода винта максимального значения необходимо регулировать тормозную рычажную передачу.

 

3 Связь кузова с тележками

 

Связи кузова с тележками предназначены для передачи всех видов усилий от рамы кузова к тележкам.

 

3.1 Кузовное подвешиваниеТележки связаны с кузовом через пружины типа «flexicоil» (см. рис. 14) упоры-ограничители и наклонные тяги. Каждая тележка имеет кузовные пружины 1, установленные на направляющие нижние чаши 4, вставленные в фиксирующие кольца на боковинах рамы тележки. Расстояние между осями колец (пружин) вдоль боковин составляет 800 мм. С рамой кузова пружины связаны через верхние стаканы 4, закрепленные на приваренных к раме банках 5, болтами 8, которые зафиксированы от отвинчивания стопорной планкой 7. Пружины изготовлены из шлифованного прутка диаметром 46 мм стали 60С2ХА с поджатыми и обточенными концевыми витками. Статический прогиб пружин под расчетной нагрузкой составляет 105 мм, высота пружины под нагрузкой равна 550 мм, поперечная жесткость пружины равна 123 Н/мм, что соответствует эквивалентной длине маятниковой подвески около 540 мм.

При добалластировке электровоза до осевой нагрузки 25 т предусматривается дополнительная установка внутренней пружины 2 с диаметром прутка 17 мм, средним диаметром витка 122 мм, высотой в свободном состоянии 520 мм, и полным числом витков 10,5. Поворот тележки относительно кузова в кривых участках пути вызывает поперечную деформацию опорных концов пружин до 91 мм в кривых радиусом до 80 – 100 м, при этом на тележку действует возвращающий момент от поперечной деформации пружин 11,75 кН∙м/град, который в крутых кривых достигает 47 кН∙м (поворот тележки до 4о). Упругая поперечная связь кузова с тележкой нелинейная: на первой половине поперечного смещения кузова относительно тележки ±20 мм жесткость связи 0,5 кН/мм определяется работой кузовных пружин 1 и 2, на второй половине поперечного смещения кузова до ±40 мм добавляется жесткость пружины 3 возвращающего устройства упора-ограничителя (см. рис. 15) 2,1 кН/мм – в результате чего от жесткого упора рамы тележки в упорную плиту 4 рамы кузова упругая возвращающая сила возрастает до 62 кН. Пальцы упора 2 возвращающих устройств с пружинами закреплены на боковинах рамы в стакане 1 посередине тележки и после регулируемого зазора 20 мм упираются в упорные плиты, закрепленные на обносном швеллере рамы кузова.

 

3.2 Наклонные тяги

 

Продольная связь тележки с кузовом осуществляется наклонной тягой, рисунок 16, с шарнирами от концевой поперечной балки рамы тележки к кронштейну, закрепленному посередине рамы кузова.

 

 

Кронштейн рамы кузова имеет два упора для установки резино-металлических шарниров наклонных тяг: передней и задней тележек секции электровоза.

Крепление наклонной тяги к кронштейну на концевой балке рамы тележки производится через шарнирный подшипник 10 типа ШС80, который установлен в головке тяги 1. Сверху головка уплотнена резиновым кольцом, установленным между фланцем 2 и лабиринтом 3, снизу головка закрыта крышкой 4, а образованная полость подшипника заполнена жидкой смазкой.

Собственно тяга состоит из трубы 108х16 с приварной головкой для шарнирного подшипника и с другой стороны с приварным стержнем, на котором между двумя тарелками 7 и упором кронштейна кузова установлены два эластомерных блока 6 с предварительным поджатием на 16 мм каждый. При этом между тарелками и упором кронштейна остается зазор по 10 мм, за счет которого упруго передаются силы тяги-торможения до расчетного значения коэффициента тяги 0,3 (до суммарной силы тяги от тележки 14-15 кН).Длина тяги между центрами шарниров составляет 2525 мм, угол наклона тяги от горизонта 8о, причем, продолжение оси тяги совпадает с серединой базы тележки на уровне головок рельсов. Эта схема продольной связи тележки с кузовом позволяет обеспечить коэффициент использования сцепной массы электровоза до 0,92.

 

3.3 Гидравлический гаситель колебаний

 

Гидравлические гасители предназначены для гашения вертикальных, горизонтальных, а так же галопирующих колебаний кузова электровоза возникающих при движении. На электровозе применены три типа гидравлических гасителей колебаний: 698-09, 698-10, 698-11. Конструктивно типы гасителей не отличаются, при этом имеют различные технические характеристики.

Гидравлический гаситель, рисунок 17, колебаний представляет собой поршневой телескопический демпфер одностороннего действия, развивающий усилие сопротивления только на ходе сжатия. Ход растяжения является вспомогательным, шток свободно перемещается вверх и засасывает рабочую жидкость в поршневую полость.

При ходе поршня вверх в поршневой полости 22 цилиндра образуется разряжение. За счет перепада давления в этой полости и в рекуперативной, жидкость из рекуперативной камеры поступает в поршневую полость 22 цилиндра.

При остановке поршня гасителя диск закрывает впускные отверстия клапана, и при движении поршня вниз часть масла с большим сопротивлением вытесняется из подпоршневой полости, через дроссельные щели клапана, обратно в рекуперативную камеру, а другая часть – через дроссельные отверстия в штоке, в надпоршневую полость 5 цилиндра. Масло, пройдя через отверстия в штоке при заполнении надпоршневой полости, имеет возможность, через отверстия в цилиндре 6 перетекает в рекуперативную камеру.

С увеличением давления в подпоршневой полости цилиндра свыше 2,9±0,3 МПа срабатывает предохранительный клапан 24, ограничивая тем самым усилие сопротивления гасителя.

 

4 Кузов электровоза

 

Условия обеспечения прочности, жесткости и долговечности несущей конструкции кузова регламентируется «Нормами для расчета и оценки прочности несущих элементов, динамических качеств и воздействия на путь экипажной части локомотивов железных дорог МПС РФ колеи 1520 мм. Утверждены МПС РФ 12.01.98г.»

Кузов электровоза (см. рис. 18) однокабинный, вагонного типа, предназначен для размещения силового и вспомогательного электрооборудования, оборудования для обеспечения собственных нужд локомотива, размещения рабочих мест локомотивной бригады, а также для восприятия и передачи нагрузок:

- вертикальной статической от массы внутрикузовного оборудования, запаса песка;

- крышевого и подкузовного оборудования;

- динамических, возникающих при взаимодействии с вагонами поезда и тележками локомотива и ударных воздействий в автосцепку.

Конструкция кузова спроектирована с учетом обеспечения необходимой прочности, жесткости и долговечности конструкции, технологичности при изготовлении, ремонте и эксплуатации электровоза, удобства и безопасности работы локомотивной бригады при управлении и обслуживании электровоза, требований технической эстетики и аэродинамики. Кузов электровоза состоит из остова (боковых стен), крышевой секции, несущей рамы, и кабины управления. Боковые стенки кузова представляют собой решётчатый каркас из прокатных и гнутых профилей, обшитый гофрированным стальным листом толщиной 2,5 мм из стали марки.

Крышевая секция (см. рис. 19) состоит из основной части (высотой 935 мм и шириной 3060мм) и трех съемных частей люка.

 

4.1 Рама кузова

 

Главная рама электровоза охватывающего типа, состоит из двух боковин, двух буферных брусьев, боковых опор для пружин второй ступени подвешивания и двух балок для передачи силы тяги.

Рама кузова (см. рис. 20) имеет комбинированное строение, отличительной особенностью которого является то, что рама содержит силовой пояс, т.е. элемент традиционного строения рам электровозов, а в концевых частях рама усилена хребтовыми балками, т.е. элементами традиционного строения рам тепловозов. Это позволило рационально распределить силовой поток продольной нагрузки и тем самым обеспечить необходимые жесткость и прочность конструкции без значительного увеличения ее массы и с применением традиционных профилей и материалов. Расчетами с использованием подробных трехмерных конечно-элементных моделей установлено, что конструкция рамы обеспечивает следующие показатели:

- восприятие продольных сил растяжения и сжатия по оси автосцепок до 2,5 МН;

- подъемку за поддомкратные опоры при выкатке тележек;

- диагональную подъемку кузова;- аварийную (после схода электровоза с рельсов) подъемку кузова за автосцепку;

- максимальная стрела прогиба кузова с оборудованием под собственным весом составляет не более 8мм.

- частота первой формы свободных изгибных колебаний кузова в вертикальной плоскости – не менее 8 Гц.

К лобовому листу буферного бруса приварена розетка автосцепки; снизу буферный брус имеет коробчатый проем для поглощающего аппарата автосцепки. К нижнему листу буферного бруса прикрепляют путеочиститель. Буферный брус сварен из листовой стали и усилен накладками. Балки для передачи силы тяги и торможения сварены из стальных листов толщиной 10—12 мм. К средней части балки приварен кронштейн для крепления тяг от тележки.

Боковины рамы кузова сварены из полос (900x12 мм), нижнего швеллера высотой 300 мм с осью, расположенной приблизительно по оси автосцепки, и верхнего профиля высотой 170 мм. При этом боковина рамы кузова закрывает верхнюю часть тележки.

Несущие элементы кузова (см. рис. 20) изготовлены из низколегированной стали 09 Г2С. Кроме основных элементов, жесткость рамы обеспечивают продольные, поперечные элементы высотой до 170 мм и настил рамы толщиной 6 мм.

Над настилом рамы монтируются воздуховоды, прокладывается монтажный короб для проводов и трубопроводов, постаменты для модулей системы вентиляции ТЭД и пуско-тормозных резисторов, тормозного и вспомогательного компрессоров и другого оборудования, связанные в монтажную раму.

Энергопоглощающее устройство представляет собой конструкцию, изготовленную из силового каркаса и стальных гнутых пластин. Поглощение энергии удара происходит в результате деформации пластин.

 

4.2 Кабина управления

 

Кабина управления изготавливается в виде отдельного модуля, который устанавливается на раму кузова и крепится сваркой к раме и прилегающим частям боковых стен кузова. Металлоконструкция кабины состоит из силового каркаса, в передней части которого размещено энергопоглощающее устройство для защиты локомотивной бригады при соударении электровоза с препятствием.

Каркас кабины управления состоит(см. рис. 21) из каркасов лобовой части, пола, боковых и поперечной стен и крыши, изготовленных, в основном, из стальных гнутых профилей. Все крупные узлы конструкции собираются на стендах, с соблюдением установленных допусков на размеры, чтобы при окончательной сборке каркаса кабины избежать пригоночных работ. На лобовой части кабины управления расположены подножки и поручни для протирки лобовых стекол и стекла прожектора, установленные по условиям вписывания в габарит подвижного состава по ГОСТ 9238-83 и соответствующие требованиям СН и ЭТ ЦУВСС-6/35. Для защиты лобовых и боковых окон от попадания воды, стекающей с крыши, предусмотрены водоотводящие козырьки. Для доступа локомотивной бригады в кабину управления выполнена дверь в задней стене кабины.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: