Определение параметров уравнения парной регрессии.





Важнейший частный случай стат. связи – корреляционная связь. При корреляц. связи разным значениям одной переменной соответствуют различные ср. значения др. переменной, т.е. с изменением значения признака х изменяется ср. значение признака у.

В статистике принято различать след. виды зависимости:

1. парная корреляция – связь между 2мя признаками результативным и факторным, либо м-ду двумя факторными.

2. частная корреляция – зависимость м-ду результативным и одним факторным признаком при фиксир. значении др. факторного признака.

3. множественная корреляция – зависимость результат. признака от двух и более факторных признаков.

Уравнение парной линейной корреляционной связи называется уравнением парной регрессии и имеет вид . Где - ср. значение разультативного признака y, при определеных значениях признака x; a – свободный член уравнения; b – коэф-фициент регрессии, показывает вариацию приз-нака y, приходящуюся на единицу вариации x.

Параметры уравнения находятся с помощью метода наименьших квадратов. Исходным методом наименьших квадратов для прямой линии является следующее:

С помощью преобразований получаем систему нормальных уравнений:

an + båxi=åyi

aåxi + båxi2=åxiyi

Если первое уравнение системы разделить на n:

, откуда

Для расчета параметра b используется формула:

Коэффициент парной регрессии, обозначенный b имеет смысл показателя силы связи между показателями факторного признака x и вариаций результативного признака y. Положительный знак при коэффициенте регрессии говорит о прямой связи между признаками, знак «-» говорит об обратной связи между признаками
44. Статистические методы изучения стохастических (корреляционных) взаимосвязей.

Важнейший частный случай стат. связи – корреляц. связь. При коррел. связи разным значениям одной переменной соответствуют различные ср. значения другой. переменной, т.е. с изменением значения признака х изменяется ср. значение признака у.

Для того, чтобы определить существует или отсутствует корреляц. связь использ-ся ряд методов:

Простейший способ обнаружения связи явл. сопоставление двух параллельных рядов - ряда значений факторного признака и соответств-щих ему значений результативного признака. Значения факторн. признака располагают в возраст. порядке и затем прослеживают направление изменения величины результ. признака. Пример:

Если ↑ величины факт. признака влечет за собой ↑ величины результ. признака, то говорят о наличии прямой корреляц. связи. Если ↓ результ. признака- обратная связь м-ду признаками.

Построение корреляц. таблицы начинают с группир-ки значений фактор. и резул. признаков. Если частоты в табл. расположены по диагонали из левого верх. угла в правый нижний- то это прямая корреляц. завис-ть м-ду признаками. Если справа-налево- то обратная связь.

Графич. метод использ-ся не только для выявления связи, но и для хар-ки формы связи.

Если эмпирич. линия приближается к виду прямой– прямалинейная корреляц. связь, если нет- криволин.

 





Читайте также:
Экономика как подсистема общества: Может ли общество развиваться без экономики? Как побороть бедность и добиться...
Новые русские слова в современном русском языке и их значения: Менсплейнинг – это когда мужчина что-то объясняет...
Образцы сочинений-рассуждений по русскому языку: Я думаю, что счастье – это чувство и состояние полного...
Аффирмации для сектора семьи: Я создаю прекрасный счастливый мир для себя и своей семьи...

Рекомендуемые страницы:


Поиск по сайту

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Обратная связь
0.014 с.