Основные факторы метаморфизма




Основные типы текстур

Каждый монослой характеризуется параметрами: вещество M (материал), D, SR, OR. Поскольку , то монослои характеризуются параметрами и . Далее эти параметры записываются в виде биекции . Если в соседних монослоях и и , то такие монослои будем называть тождественными (или эквивалентными). В таком случае граница между монослоями отсутствует (то есть ). Если этими свойствами обладают все последовательно наслаиваемые друг на друга монослои, то между ними границы отсутствуют. В этом случае совокупность этих монослоев образует слой, а порода приобретает монолитную текстуру.

Это тип компактных монолитных текстур. Если же хотя бы один из компонентов свойств не совпадает с соответствующим компонентом свойств , то граница сохраняется (или ).

Если в образце присутствуют несколько монослоёв (слоёв), каждый из которых отличается хотя бы одним элементом текстуры от соседнего монослоя (или слоя), то имеет место слоистая текстура. Это тип компактных слоистых текстур. Эти типы исчерпывают все многообразие основных типов текстур.

Между монолитными текстурами и слоистыми текстурами существует принципиальное различие. В первом случае выявляются отношения между зёрнами породы. При этом устанавливаются признаки, определяющие текстуру самой породы: отношения между размерными параметрами (структура), отношения между формами зерен, ориентировка зерен. Тип монолитных текстур является единственным представителем текстур в породе.

В случае слоистой текстуры появляется новый вид отношения: отношение между слоями (слойками). Кроме вышеназванных признаков, определяющих текстуру породы, выполняющей слой, здесь появляются новые признаки, характеризующие отношения слоёв как геологических тел друг относительно друга: средних ориентировок зёрен одного слоя относительно ориентировок зёрен другого слоя, отношение между самими слоями; отношение между размерными параметрами одного слоя относительно размерных параметров другого слоя. Таким образом, слоистая текстура отражает более высокий уровень организации геологического материала. В породе слоистых текстур нет.

В практике геологических исследований часто фигурирует понятие «слоистая порода» (слоистый песчаник, слоистый алевролит и пр.). Под слоистой породой понимают породу, обладающую слоистой текстурой. В связи с изложенными выше соображениями это понятие необходимо признать не корректным. По определению порода с монолитной текстурой сложена зернами без признаков их пространственного разделения. В «слоистой породе» ситуация совершенно иная. Здесь слоистость обусловлена наличием слоёв (слойков), то есть самостоятельных геологических тел, заполненных породами; в каждом слое порода имеет монолитную текстуру. Следовательно, образец с выявленной слоистой текстурой сложен набором пород, а к набору пород термин «порода» как единичный признак вообще не применим.

Классификация текстур.

I. Тип компактных монолитных текстур.

Выделяются подтипы текстур:
А. Подтип текстур изотропных (массивных). Параметры структурных элементов не изменяются вдоль (эталонных) линий, проходящих через образец в любом направлении. Во всех случаях зёрна располагаются статистически хаотично, беспорядочно в породе с равно- или разнозернистой массой. Это — подтип компактных монолитных массивных текстур (текстуры беспорядочная, плотная, неориентированная, однородная и др.).
Б. Подтип текстур анизотропных. Свойства породы изменяются с изменением ориентировки эталонных линий. Выделяются классы текстуры:
Ба. Класс компактных монолитных ориентированных текстур; обусловлен особенностями строения основной массы породы. Сюда относятся текстуры с согласно ориентированными друг относительно друга зёрнами; иногда их называют гломерокристаллическими, сланцевыми, ориентированными текстурами и пр.

Бб. Класс компактных монолитных ориентированных линейных текстур; обусловлен наличием ориентированных единичных структурных элементов при хаотичном расположении зерен вмещающей их массы; сюда относятся породы различных порфировых и порфировидных структур, в которых порфировые (порфировидные) зерна, миндалины и пр. являются единичными структурными элементами. Выделяются подклассы:

Бба. Ориентированные зерна не образуют единого сообщества и разбросаны по образцу бессистемно. По Н. А. Елисееву это параллельно-линейные текстуры.

Ббб. Ориентированные зерна (обычно пластинчатые кристаллы) образуют единое сообщество, проявляемое в виде плоско-параллельного «слоя», создавая видимость слоистой текстуры. По Н. А. Елисееву это плоско-параллельные (ложно слоистые) текстуры.

Бв. Текстуры, обусловленные наличием ориентированных структурных агрегатов, например, шлиров, обломков пород и пр. Это класс компактных агрегативных текстур (текстуры такситовые, атакситовая и пр.). Этот подкласс текстур специально не выделяется. Если же агрегат рассматривать как обобщенное зерно, то здесь также выделяются текстуры, определяемые расположением единичных структурных элементов. Поэтому можно выделить подклассы:

Бва. компактные агрегативные массивные текстуры;

Бвб. компактные агрегативные параллельно-линейные текстуры;

Бвв. компактные агрегативные плоско-параллельные текстуры.

II. Тип слоистых текстур.

За основу анализа взята пара соседних слоёв, имеющих четко выраженные элементы текстуры. Виды текстур, устанавливаемые на основе анализа этой пары, называются элементарными. Здесь уже на сцену выступает форма элементов текстур. Независимо от вида этой формы, их всех объединяет наличие некоторого радиуса Rкр кривизны, на основе которого выделяются крайние подтипы элементарных слоистых текстур: если Rкр = , то имеет место подтип ламинарных слоистых текстур. Если Rкр << — то подтип турбулентных (вихревых) слоистых текстур.
А. Подтип ламинарных слоистых текстур. Элементы внутреннего строения располагаются субпараллельно границам слоёв, напоминая ламинарное течение жидкости. Выделяются классы ламинарных слоистых текстур.

Аa. Класс простых ламинарных слоистых текстур. Устанавливаются при анализе внутреннего строения одного слоя. Сюда относятся текстуры слоистая, ленточная, плойчатая, полосчатая, сланцеватая, гнейсовидная, параллельная и др. текстуры. Подклассы:

Ааa. Элементы текстур практически параллельны друг другу.

Аaб. Элементы текстур не строго параллельны друг другу, но они изменяются симбатно друг относительно друга, нигде не пересекаясь.

Аaв. Слои располагаются косо относительно границы слоя. Текстуру часто относят к разновидностям косой слоистой (текстуры косой слоистости).

Аб. Класс сложных ламинарных слоистых текстур. Устанавливается при анализе отношений минимум двух соседних слоёв. Элементы текстуры одного слоя (скажем слоя А) располагаются произвольно относительно границы или элементов текстуры соседнего слоя Б. Возможно выделение подклассов:

Аба. согласных ламинарных слоистых текстур — ориентировки элементов текстур обоих слоёв совпадают. Возможно совпадение и мощностей элементов текстур. Но, по крайней мере, в одной граничной точке характеристики ( и пр.) слоёв различны.

Абб. контрастных ламинарных слоистых текстур — ориентировки

элементов текстур обоих слоёв существенно различны.
Возможны разновидности текстур:
Абба. Слой А обладает простой ламинарной слоистой текстурой, слой Б — косой слоистой текстурой.
Аббб. Оба слоя обладают косой слоистой текстурой, но элементы текстуры слоя А располагается косо к элементам текстуры слоя Б.
Б. Подтип турбулентных (вихревых) слоистых текстур. Такие текстуры обычно называются (собственно) косой слоистостью. Одним из свойств (кроме Rкр) элементов текстур этого подтипа является ограниченность длин слойков в сечении образца. По характеру поведения Rкр можно выделить текстуры:

Ба. Rкр = const. Слой образует эллипсовидное кольцо постоянной формы. Так как мы имеем дело со слоистыми явлениями, то образуется сферическое образование (эллипс, шар и пр.), заполненное слоистым веществом. Сама сфера может быть срезана другими сферическими образованиями. Строго анализа этого вида текстур не существует.

Бб. Rкрconst. Радиус кривизни изменяется не только по длине элемента текстуры, но и от слойка к слойку.

[ править ]История формирования механогенных пород

Согласно представлениями Н. М. Страхова, являющихся в настоящее время руководящими, процесс формирования механогенной осадочной горной породы называется литогенезом (Страхов, 1960) и состоит из стадий:

образование осадочного материала;

перенос осадочного материала;

седиментогенез — накопление осадка;

диагенез — преобразование осадка в осадочную горную породу;

катагенез — стадия существования осадочной горной породы в зоне стратисферы;

метагенез — стадия глубокого преобразования осадочной горной породы в глубинных зонах земной коры.

[ править ]Образование осадочного материала

Образование осадочного материала происходит за счёт действия различных факторов — влияния колебаний температуры, воздействия атмосферы, воды и организмов на горные породы и т. д. Все эти процессы приводят к изменению и разрушению пород и объединяются одним терминомвыветривание.

[ править ]Перенос осадочного материала

Осадочный обломочный материал обычно не остается на месте, а переносится под действием различных факторов в те участки земной поверхности, где существуют условия, благоприятные для его на копления и захоронения.

Перенос осуществляется главным образом с помощью воды и ветра; кроме них заметную роль в перемещении осадков играют движущиеся ледники, айсберги и прибрежные льды, свя занные с проявлением силы тяжести оползни, осыпи, обвалы; а также живые организмы. В последние десятилетия существенную геологическую роль начинает играть техногенный перенос материала, связанный с различными строительными работами.

Перенос, или механическая транспортировка зёрен, образовавшихся в результате механического разрушения материнских пород, можно рассматривать как природный гидравлический транспорт (гидротранспорт), поэтому для описания переноса можно использовать представления о гидротранспорте в гидравлике [19] . В основе этих представлений лежит тесная связь между водным (ветровым) потоком и находящейся в нём взвеси твёрдого вещества. При этом скорость перемещения зерна потоком обратно пропорциональна не только размеру перемещаемого зерна, но и плотности (удельному весу) слагающего зерно минерала. При этом происходит разделение минералов как по размерам зёрен, так и по плотности слагающих зёрна минералов. В качественном плане на это явление обращали внимание Л. Б. Рухин (1912—1959) [20] и Н. М. Страхов [5] .

Для близгоризонтальных напорныхпотоков, которыми являются большинство природных гидросистем, применимо уравнение [19] , в практическомплане преобразовано в одну из форм гиперболического выражения

,

где — обобщённый линейный параметр; как правило или ; ; .

Это уравнение использовано для определения палеоскоростейдвижения зёрен в некоторых объектах [21] , а сам метод получил название Геоспидометр [22] , [23] ; [7] .

Чаще всего аргументом является величина , говоря о том, что зерно ориентировано поперёк течения воды в потоке; это допустимо при перемещении зёрна перекатыванием.

Это зависимость легко вписывается в импульсный (пульсационный) механизм движения взвеси. Пульсационный механизм перемещения материала позволяет говорить о периодичности протекания процесса.

Перемещение зерна подчиняется аксиомам:
1. Перемещение осадочного материала осуществляется как в декартовыхкоординатах, так и во времени, то есть , где — масса переносимого материала; — координата, вдоль которой происходит перемещение материала.
2. Осадочный материал поступает в бассейн осаждения вследствие разрушения некоторого исходного материнского геологическоготела, заполненного рыхлым материалом, так, что количество выносимого материала пропорционально количеству материала в исходном геологическом теле. Это, в конечном счёте, приводит к уравнению перемещения вещества [7] :

при преобразовании которого получено простейшее гиперболическое уравнение, или уравнение струны.

[ править ]Накопление осадка

Транспортируемый осадочный материал осаждается в пониженных участках рельефа. Скорость накопле ния осадка колеблется в очень широких пределах — от долей мил лиметра (глубоководные части морей и океанов) до нескольких метров в годустьях круп ных горныхрек).

Длительное и устойчивое погружение области осадконакопления предопределяет образование мощной, однородной осадочной толщи. В случае частой смены тектонического режима, а также при сезонных изменениях климата происходит переслаивание осадков, различных по составу и строению.

В процессе переноса и осаждения осадочного материала под влиянием механических, химических, биологических и физико-химических процессов происходит его сортировка и избирательный переход в твер дую фазурастворённых и газообразных веществ. Этот процесс называется оса дочной дифференциацией. Образовавшиеся в результате осадочные породы в большин стве своём отличаются от магматических и метаморфических более простым химическим составом, высокой концентрацией отдельных компонентов или более высокой степенью однородности частиц по размеру.

Следует иметь в виду, что наряду с дифференциацией на поверхности нашей планеты может происходить и смешивание осадочного материала (интеграция), поступающего из разных источников сноса. Этот процесс приводит к образованию полиминеральных пород, например, граувакк, слагающихся как разнородными обломочными и минеральными компо нентами, так и биогенным и хемогенным материалом.

Это перемещение называется транспортировкой. Транспортировка, как правило, завершается осаждением материала. Эта стадия — стадия преноса и осаждения вещества называется седиментогенезом (сложное явление, включающее механическое, химическое выветривание, дифференциацию продуктов выветривания, образование и разрушение коллоидных и ионных систем).

[ править ]Биогенные породы

Основная статья: Биогенные породы

[ править ]Хемогенные породы

Основная статья: Хемогенные породы

[ править ]Диагенез

Осадок, накопившийся на дне водоема или на поверхности суши, обычно представляет собой неравновесную систему, состоящую из твердой, жидкой и газовой фаз. Между составными частями осадка начинается физико-химическое взаимодействие. Активное участие в преобразовании осадков принимают обитающие в иле организмы.

Во время диагенеза происходит уплотнение осадка под тяжестью образующихся выше него слоев, обезвоживание, перекри сталлизация. Взаимодействие составных частей осадка между со бой и окружающей средой приводит к растворению и удалению неустойчивых компонентов осадка и формированию устойчивых минеральных новообразований. Разложение отмерших животных организмов и растений вызывает изменение окислительно-восста новительных и щелочно-кислотных свойств осадка. К концу диагенеза жизнедеятельностьбактерий и других организмов почти пол ностью прекращается, а система осадок — среда приходит в равновесие.

Продолжительность стадии диагенеза из меняется в широких пределах, достигая десятков и даже сотен тысяч лет. Мощность зоны осадка, в которой протекают диагенетические преобразования, также колеблется в значительном диа пазоне и, по оценке большинства исследователей, составляет 10— 50 м, а в ряде случаев, по-видимому, может быть и больше.

[ править ]Катагенез

В эту стадию осадочные породы претерпевают существенные преобразования, сопровождаемые изменением химико-минералогического состава, строения и физических свойств. Основными факторами преобразования пород являются температура, давление, вода, растворенные в ней соли и газообразные компо ненты, рН, Еh и радиоактивное излучение. Направленность и ин­тенсивность преобразований в значительной степени определяются составом и физическими свойствами пород. В процессе катагенеза происходит уплот нение пород, их обезвоживание, растворение неустойчивых сое динений, а также перекристаллизация и образование новых минералов.

[ править ]Метагенез

Основная статья: Метагенез (геология)

На этой стадии происходит максимальное уплотнение осадочных пород, меняется их минеральный состав, структура. Преобразование пород происходит под влиянием тех же факторов, что и при катагенезе, но температура более высокая (200—300 °C), выше минерализация и газонасыщенность вод, иные значения Еh и рН.

Изменение структуры пород проявляется в укрупнении размера зерен, в упорядочении их ориентировки, перекристаллизации с исчезновением фаунистических остатков. Завершается стадия метагенеза переходом оса дочных пород в метаморфические горные породы.

[ править ]Условия залегания осадочных горных пород

Большинство осадочных пород залегает в виде пластов, или слоев.


Метаморфические горные породы — горные породы, образованные в толще земной коры в результате изменения (метаморфизма) осадочных или магматических горных пород вследствие изменения физико-химических условий. Благодаря движениям земной коры осадочные горные породы и магматические горные породы подвергаются воздействию высокой температуры, большого давления и различных газовых и водныхрастворов, при этом они начинают изменяться.

Содержание [ показать ]

[ править ]Типы метаморфизма

Одна из последних классификаций метаморфизма [1] приведена в таблице:

Тип метаморфизма Факторы метаморфизма
Метаморфизм погружения Увеличение давления, циркуляция водных растворов
Метаморфизм нагревания Рост температуры
Метаморфизм гидратации Взаимодействие горных пород с водными растворами
Дислокационный метаморфизм Тектонические деформации
Ударный метаморфизм Падение крупных метеоритов, мощные эндогенные взрывы (?)

[ править ]Состав, текстуры и структуры метаморфических горных пород

[ править ]Формы залегания метаморфических пород

Так как исходным материалом метаморфических горных пород являются осадочные и магматические породы, их формы залегания должны совпадать с формами залегания этих пород. Так на основе осадочных пород сохраняется пластовая форма залегания, а на основе магматических — форма интрузий или покровов. Этим иногда пользуются, чтобы определить их происхождение. Так, если метаморфическая порода происходит от осадочной, ей дают приставку пара- (например, пара гнейсы), а если она образовалась за счёт магматической породы, то ставится приставка орто- (например, орто гнейсы).

[ править ]Состав метаморфических пород

Химический состав метаморфических горных пород разнообразен и зависит в первую очередь от состава исходных. Однако состав может отличаться от состава исходных пород, так как в процессе метаморфизма происходят изменения под влиянием привносимых водными растворами веществ и метасоматических процессов.

Минеральный состав метаморфических пород также разнообразен, они могут состоять из одного минерала, например кварца (кварцит) или кальцита (мрамор), или из многих сложных силикатов. Главные породообразующие минералы представлены кварцем, полевыми шпатами, слюдами, пироксенами и амфиболами. Наряду с ними присутствуют типично метаморфические минералы: гранаты, андалузит, дистен, силлиманит, кордиерит, скаполит и некоторые другие. Характерны, особенно для слабометаморфизованных пород тальк, хлориты, актинолит, эпидот, цоизит, карбонаты.

Физико — химические условия образования метаморфических пород, определённые методами геобаротермометрии весьма высокие. Они колеблются от 100—300 °C до 1000—1500 °C и от первых десятков баров до 20—30 кбаров

[ править ] Текстуры метаморфических пород

Текстура пород, как пространственная характеристика свойств породы, отражает способ заполнения пространства.

Сланцевая: большое распространение в метаморфических породах получили листоватые, чешуйчатые и пластинчатые минералы, что связано с их приспособлением к кристаллизации в условиях высоких давлений. Это выражается в сланцеватости горных пород, которая характеризуется тем, что породы распадаются на тонкие плитки и пластинки.

Полосчатая — чередование различных по минеральному составу полос (например, у циполина), образующихся при наследовании текстур осадочных пород.

Пятнистая — наличие в породе пятен, отличающихся по цвету, составу, устойчивости к выветриванию.

Массивная — отсутствие ориентировки породообразующих минералов.

Плойчатая — когда под влиянием давления порода собрана в мелкие складки.

Миндалекаменная — представленная более или менее округлыми или овальными агрегатами среди сланцеватой массы породы.

Катакластическая — отличающаяся раздроблением и деформацией минералов.

«Миндалекаменная текстура» не может относиться собственно к текстурам, поскольку не является характеристикой способа заполнения пространства. Она более всего характеризует структурные особенности породы.
«Катакластическая текстура» также не может быть текстурной характеристикой по тем же причинам. Термин «катакластический» отражает только механизм образования зерен, выполняющих породу.

[ править ] Структуры метаморфических пород

Понятие «структура» не имеет строгого определения и носит интуитивный характер. Согласно практике геологических исследований «структура» больше характеризует размерные (крупно-, средне- или мелкообломочные) параметры слагающих породу зёрен.

Структуры метаморфических пород возникают в процессе перекристаллизации в твёрдом состоянии, или кристаллобластеза. Такие структуры называют кристаллобластовыми. По форме зёрен различают текстуры [1] :

гранобластовая (агрегат изометрических зёрен);

лепидобластовая (агрегат листоватых или чешуйчатых кристаллов);

нематобластовая (агрегат игольчатых или длиннопризматических кристаллов);

фибробластовая (агрегат волокнистых кристаллов).

По относительным размерам:

гомеобластовая (агрегат зёрен одинакового размера);

гетеробластовая (агрегат зёрен разных размеров);

порфиробластовая;

пойкилобластовая (наличие мелких вростков минералов в основной ткани породы);

ситовидная (обилие мелких вростков одного минерала в крупных кристаллах другого минерала).

[ править ]Наиболее распространённые метаморфические породы

[ править ]Породы регионального метаморфизма

Здесь приведены породы образовавшиеся в результате регионального метаморфизма (от менее к более метаморфизованным).

Глинистые сланцы — представляют начальную стадию метаморфизма глинистых пород. Состоят преимущественно из гидрослюд, хлорита, иногда каолинита, реликтов других глинистых минералов (монтмориллонита, смешаннослойных минералов), кварца, полевых шпатов и других неглинистых минералов. В них хорошо выражена сланцеватость. Они легко раскалываются на плитки. Цвет сланцев: зелёный, серый, бурый до чёрного. Содержат углистое вещество, новообразования карбонатов и сульфидовжелеза.

Филлиты [греч. филлитес — листоватый ] — плотная темная с шелковистым блескомсланцеватая порода, состоящая из кварца, серицита, иногда с примесью хлорита, биотита и альбита. Образуются при метаморфизме глинистых сланцев, но не содержат глинистых минералов. По степени метаморфизма переходная порода от глинистых к слюдяным сланцам.

Хлоритовые сланцы — Хлоритовые сланцы представляют собой сланцеватые или чешуйчатые породы, состоящие преимущественно из хлорита, а также актинолита, талька, слюды, эпидота, кварца и других минералов. Цвет их зелёный, на ощупь жирные, твердость небольшая. Часто содержат магнетит в виде хорошо образованных кристаллов (октаэдров).

Тальковые сланцы — агрегат листочков и чешуек талька сланцеватого строения, зеленоватого или белого цвета, мягок, обладает жирным блеском. Встречается изредка среди хлоритовых сланцев и филлитов в верхнеархейских (гуронских) образованиях, но иногда является результатом метаморфизации и более молодых осадочных и изверженных (оливиновых) горных пород. Как примесь присутствуют магнезит, хромит, актинолит, апатит, глинкит, турмалин. Часто к тальку в большом количестве примешиваются листочки и чешуйки хлорита, обусловливающие переход в тальково-хлористовый сланец.

Кристаллические сланцы — общее название обширной группы метаморфических пород, характеризующиеся средней (частично сильной) степенью метаморфизма. В отличие от гнейсов в кристаллических сланцах количественные взаимоотношения между кварцем, полевыми шпатами и тёмноцветными минералами могут быть разными.

Амфиболиты — метаморфическая горная порода, состоящая из амфибола, плагиоклаза и минералов примесей. Роговая обманка, содержащаяся в амфиболитах, отличается от амфиболов сложным составом и высоким содержанием глинозёма. В противоположность большинству метаморфических пород высоких ступеней регионального метаморфизма амфиболиты не всегда обладают хорошо выраженной сланцеватой текстурой. Структура амфиболитов гранобластовая (при склонности роговой обманки к образованию удлинённых по сланцеватости кристаллов), нематобластовая и даже фибробластовая. Амфиболиты могут образовываться как за счёт основных изверженных пород — габбро, диабазов, базальтов, туфов и др., так и за счёт осадочных пород мергелистого состава. Переходные разности к габбро называются габбро-амфиболитами и характеризуются реликтовыми (остаточными) габбровыми структурами. Амфиболиты, возникающие за счёт ультраосновных горных пород, отличаются обычно отсутствием плагиоклаза и состоят практически целиком из роговой обманки, богатой магнием (антофиллит, жедрит). Различают следующие виды амфиболитов: биотитовые, гранатовые, кварцевые, кианитовые, скаполитовые, цоизитовые, эпидотовые и др. амфиболиты.

Кварциты — зернистая горная порода, состоящая из зерен кварца, сцементированных более мелким кварцевым материалом. Образуется при метаморфизме кварцевых песчаников, порфиров. Встречаются в корах выветривания, образуясь при метасоматозе (гипергенные кварциты) с окислением медноколчеданных месторождений. Они служат поисковым признаком на медноколчеданные руды. Микрокварциты образуются из подводных гидротерм, выносящих в морскую воду кремнезём, при отсутствии других компонентов (железо, магний и др.).

Гнейсы — метаморфическая горная порода, характеризующаяся более или менее отчётливо выраженной параллельно-сланцеватой, часто тонкополосчатой текстурой с преобладающими гранобластовыми и порфиробластовыми структурами и состоящая из кварца, калиевого полевого шпата, плагиоклазов и цветных минералов. Выделяют: биотитовые, мусковитовые, двуслюдяные, амфиболовые, пироксеновые и др. гнейсы.

[ править ]Метаморфические породы образовавшиеся при динамометаморфизме

Это породы, возникающие под действием динамометаморфизма и тектонических нарушений в зоне дробления. Дроблению и деформации подвергаются не только сама порода, но и минералы.

Катаклазиты — продукт дислокационного метаморфизма, не сопровождающегося явлениями перекристаллизации и минералообразования. Внутреннее строение характеризуется присутствием сильно деформированных, изогнутых, раздробленных зёрен минералов и часто наличием мелкогранулированной полиминеральной связующей массы (цемента).

Милониты — Тонкоперетёртая горная порода с отчётливо выраженной сланцеватой текстурой. Образуются в зонах дробления, особенно по плоскостям надвигов и сбросов. Разорванные блоки горных пород, перемещаясь, дробят, перетирают и одновременно сдавливают породы, вследствие чего она становится компактной и однородной. Для милинитов характерны полосчатые текстуры, расслоёность и флюидальность. От катаклазитов отличается большей степенью раздробленности и развитием параллельной текстуры.

[ править ]Фации метаморфизма

При метаморфических преобразованиях происходят разнообразные химические реакции. Считается, что они осуществляются в твёрдом состоянии. В процессе этих реакций происходит образование новых или перекристаллизация старых минералов так, что для конкретного интервала температур и давлений этот набор минералов остаётся относительно постоянным. Определяющий набор минералов получил название «фация метаморфизма». Разделение метаморфических пород на фации началось ещё в XIX веке и связано с работами Г. Барроу (1893), А. А. Иностранцева (1877), Г. Ф. Бекера (1893) и других исследователей, и широко применялоссь в начале XX века (Ван-Хайз, 1904; В. М. Гольдшмидт, 1911; П. Эскола, 1920; Ц. Е. Тилли, 1925; и др.). Существенную роль в разработке физико-химической природы минеральных фаций сыграл Д. С. Коржинский (1899—1985). [2]

Современные представления об основных минеральных фациях метаморфизма приведены в таблице. [1]

Тип метаморфизма Фации метаморфизма Давление (МПа) Температурный интервал (°C) Примеры пород
Метаморфизм погружения Цеолитовая < (200—500) < (200—300) Метаграувакки, метавулканиты
Пренит-пумпелиитовая 200—500 200—300
Лавсонит-глауковановая (голубых сланцев) 400—800 300—400 Глаукофановые сланцы
Эклогитовая >800 > (400—700) Эклогиты
Контактовый метаморфизм Альбит-эпидотовых роговиков 250—500 Роговики контактовые, скарны
Амфиболовых роговиков 450—670
Пироксеновых роговиков 630—800
Санидиновая > (720—800)
Региональный метаморфизм Зелёных сланцев 200—900 300—600 Зелёные сланцы, хлорит-серицитовые сланцы
Эпидот-амфиболитовая 500—650 Амфиболиты, слюдяные сланцы
Амфиболитовая 550—800 Амфиболиты, биотитовые парагнейсы
Гранулитовая > (700—800) Гранулиты, гиперстеновые парагнейсы
Кианитовые сланцы > 900 500—700 Кианитовые сланцы
Эклогитовая Эклогиты

[ править ]Температуры образования метаморфических горных пород

Температуры образования метаморфических пород всегда интересовали исследователей, поскольку ни позволяли понимать условия, а отсюда и историю механизма образовани этих пород. Ранее до разработки основных методов определения температур образования метаморфических минералов главным методом решения задачи были экспериментальные исследования, основанные на анализе различных диаграмм плавкости. На этих диаграммах устанавливались основные интервалы температур и давлений, в пределах которых выявлялась устойчивость тех или иных минеральных ассоциаций. Далее результаты экспериментов практически механически переносились на природные объекты. Параметры образования конкретных минералов не изучались, что является существенным недостатком подобных исследований.

В последующие годы появились новые методы определения температур образования минералов, к которым относились анализ расплавных включений, изотопные и геохимические геотермометры (см. Геобаротермометрия); эти методы позволили уточнить границы существования тех или иных минеральных ассоциаций в природных условиях и перекинуть мостик между экспериментальными исследованиями и природными явлениями.

В настоящее время все температурные измерения, выполненные с помощью упомянутых выше геотермометров, вызывают сомнение в связи с тем, что в теоретических разработках и методах их использования выявлены существенные методические ошибки. [3][4]

Дальнейшие исследования привели к созданию новых типов изотопных геотермометров, позволивших определять температуру образования конкретных минералов. Некоторые результаты этих исследований приведены в таблице. [3]

Породы Регионы Минералы
Qw Bio Il Mt Kf Mus Alb Grn
Сланцы Австрия 700*  
Сланцы Гренландия 700*  
Сланцы Гренландия 700*  
Метапелит Альпы    
Метапелит Альпы  
Ортогнейс Альпы      
Гнейс <


Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: