Механизм возникновения ПД




Если действие раздражителя на клеточную мембрану приводит к возникновению ПД, далее сам процесс развития ПД вызывают фазовые изменения проницаемости клеточной мембраны, что обеспечивает быстрое движение иона Nа+ в клетку, а иона К+ — из клетки. Величина мембранного потенциала при этом сначала уменьшается, а затем снова восстанавливается до исходного уровня. На экране осциллографа отмеченные изменения мембранного потенциала предстают в виде пикового потенциала - ПД. Он возникает вследствие накопленных и поддерживаемых ионными насосами градиентов концентраций ионов внутри и вне клетки, т.е. за счет потенциальной энергии в виде электрохимических градиентов разных ионов. Если заблокировать процесс выработки энергии, то ПД некоторый период времени будут возникать, но после исчезновения градиентов концентраций ионов (устранение потенциальной энергии) клетка генерировать ПД не будет.

А. Фазы Потенциала действия

Существует много различных названий фаз ПД (единого мнения не сложилось):

1) местное возбуждение - пик ПД - следовые потенциалы;

2) фаза нарастания - фаза спада -следовые потенциалы;

3) деполяризация - овершут (перехлест, превышение, перелет), причем эта фаза в свою очередь делится на две части:

восходящая (инверсия, от лат. inversio - переворачивание);

нисходящая (реверсия, от лат. reversio - возврат) - реполяризация. Имеются и другие названия.

Отметим одно противоречие: термины «реполяризация» и «реверсия» но смыслу одинаковы - возврат к предыдущему состоянию, но эти состояния различны: в одном случае заряд исчезает (реверсия), в другом - восстанавливается (реполяризация). Наиболее корректны те названия фаз ПД, в которых заложена общая идея, например изменение заряда клетки. В этой связи обоснованно использовать следующие названия фаз ПД:

1) фаза деполяризации - процесс исчезновения заряда клетки до нуля;

2) фаза инверсии - изменение заряда клетки на противоположный. т.е. весь период ПД, когда внутри клетки заряд положительный, а снаружи - отрицательный;

3) фаза реполяризации - восстановление заряда клетки до исходной величины (возврат к потенциалу покоя).

 

1. Фаза деполяризации. При действии деполяризующего раздражителя на клетку (медиатор, электрический ток) вначале уменьшение мембранного потенциала (частичная деполяризация) происходит без изменения проницаемости мембраны для ионов. Когда деполяризация достигает примерно 50% пороговой величины (порогового потенциала), возрастает проницаемость ее мембраны для иона Nа+, причем в первый момент сравнительно медленно. Естественно, что скорость входа ионов Nа+ в клетку при этом невелика. В этот период, как и во время всей фазы деполяризации, движущей силой, обеспечивающей вход иона Na+ в клетку, являются концентрационный и электрический градиенты. Напомним, что клетка внутри заряжена отрицательно (разноименные заряды притягиваются друг к другу), а концентрация ионов Na+ вне клетки в 10-12 раз больше, чем внутри клетки. При возбуждении нейрона повышается проницаемость его мембраны и для ионов Са+, но его ток в клетку значительно меньше, чем ионов Nа+. Условием, обеспечивающим вход иона Nа+ в клетку и последующий выход иона К+ из клетки, является увеличение проницаемости клеточной мембраны, которая определяется состоянием воротного механизма ионных Nа- и К-каналов. Длительность пребывания электроуправляемого канала в открытом состоянии носит вероятностный характер и зависит от величины мембранного потенциала. Суммарный ток ионов в любой момент определяется числом открытых каналов клеточной мембраны. Воротный механизм Na-каналов расположен на внешней стороне клеточной мембраны (Na+ движется внутрь клетки), воротный механизм К-каналов -на внутренней (К+ движется из клетки наружу).

Активация Nа- и К-каналов (открытие ворот) обеспечивается уменьшением мембранного потенциала, Когда деполяризация клетки достигает критической величины (Eкр, критический уровень деполяризации - КУД), которая обычно составляет -50 мВ (возможны и другие величины), проницаемость мембраны для ионов Nа+ резко возрастает - открывается большое число потенциалзависимых ворот Nа-каналов и ионы Nа+ лавиной устремляются в клетку. В результате интенсивного тока ионов Nа+ внутрь клетки далее процесс деполяризации проходит очень быстро. Развивающаяся деполяризация клеточной мембраны вызывает дополнительное увеличение ее проницаемости и, естественно, проводимости ионов Na+ - открываются все новые и новые активационные m-ворота Nа-каналов, что придает току ионов Na+ в клетку характер регенеративного процесса. В итоге ПП исчезает, становится равным нулю. Фаза деполяризации на этом заканчивается.

2. Фаза инверсии. После исчезновения ПП вход Nа+ в клетку продолжается (m - ворота Na-каналов еще открыты - h-2), поэтому число положительных ионов в клетке превосходит число отрицательных, заряд внутри клетки становится положительным, снаружи - отрицательным. Процесс перезарядки мембраны представляет собой 2-ю фазу ПД - фазу инверсии. Теперь электрический градиент препятствует входу Na+ внутрь клетки (положительные заряды отталкиваются друг от друга), проводимость Na+ снижается. Тем не менее, некоторый период (доли миллисекунды) ионы Na+ продолжают входить в клетку, об этом свидетельствует продолжающееся нарастание ПД. Это означает, что концентрационный градиент, обеспечивающий движение ионов Nа+ в клетку, сильнее электрического, препятствующего входу ионов Nа+ в клетку. Во время деполяризации мембраны увеличивается проницаемость ее и для ионов Са2+, они также идут в клетку, но в нервных клетках роль ионов Са2+в развитии ПД мала. Таким образом, вся восходящая часть пика ПД обеспечивается в основном входом ионов Nа+ в клетку.

Примерно через 0,5-1 мс после начала деполяризации рост ПД прекращается вследствие закрытия ворот Nа-каналов (h-3) и открытия ворот К-каналов (в, 2), т.е. увеличения проницаемости для ионов К+. Поскольку ионы К+ находятся преимущественно внутри клетки, они, согласно концентрационному градиенту, быстро выходят из клетки, вследствие чего в клетке уменьшается число положительно заряженных ионов. Заряд клетки начинает возвращаться к исходному уровню. В фазу инверсии выходу ионов К+ из клетки способствует также электрический градиент. Ионы К+ выталкиваются положительным зарядом из клетки и притягиваются отрицательным зарядом снаружи клетки. Так продолжается до полного исчезновения положительного заряда внутри клетки - до конца фазы инверсии, когда начинается следующая фаза ПД - фаза реполяризации. Калий выходит из клетки не только по управляемым каналам, ворота которых открыты, но и по неуправляемым каналам утечки.

Амплитуда ПД складывается из величины ПП (мембранный потенциал покоящейся клетки) и величины фазы инверсии - около 20 мв. Если мембранный потенциал в состоянии покоя клетки мал, то амплитуда ПД этой клетки будет небольшой.

3. Фаза реполяризации. В этой фазе проницаемость клеточной мембраны для ионов К+ все еще высока, ионы К+ продолжают быстро выходить из клетки согласно концентрационному градиенту. Клетка снова внутри имеет отрицательный заряд, а снаружи - положительный, поэтому электрический градиент препятствует выходу К* из клетки, что снижает его проводимость, хотя он продолжает выходить. Это объясняется тем, что действие концентрационного градиента выражено значительно сильнее действия электрического градиента. Таким образом, вся нисходящая часть пика ПД обусловлена выходом иона К+ из клетки. Нередко в конце ПД наблюдается замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для ионов К+ и замедлением выхода их из клетки вследствие закрытия ворот К-каналов. Другая причина замедления тока ионов К+ связана с возрастанием положительного потенциала наружной поверхности клетки и формированием противоположно направленного электрического градиента.

Главную роль в возникновении ПД играет ион Na+, входящий в клетку при повышении проницаемости клеточной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене иона Nа+ в среде на другой ион, например холин, или в случае блокировки Na-каналов тетродотоксином, ПД в нервной клетке не возникает. Однако проницаемость мембраны для иона К+ тоже играет важную роль. Если повышение проницаемости для иона К+ предотвратить тетраэтиламмонием, то мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправляемых каналов (каналы утечки ионов), через которые К+ будет выходить из клетки.

Роль ионов Са2+ в возникновении ПД в нервных клетках незначительна, в некоторых нейронах она существенна, например в дендритах клеток Пуркинье мозжечка.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: