Биохимический, иммунологический и микробиологический методы




Биохимический и иммунологический методы основаны на анализе различных классов органических и неорганических соединений, дефектных при разных наследственных заболеваниях, в первую очередь, при наследственных болезнях обмена. Биохимические нарушения, как правило, предшествуют появлению клинических симптомов заболевания и являются по сравнению с ними более константными. Предметом биохимической диагностики могут быть белки, аминокислоты, углеводы, липиды, ионы металлов и др., а также их метаболиты. При этом исследовать можно разные ткани и секреты организма (кровь, моча, слюна, пот, ликвор, амниотическая жидкость, биоптаты мышц, кожи, печени и других специализированных тканей).

Биохимические методы играют первостепенную роль в диагностике наследственных нарушений обмена веществ. В некоторых случаях они позволяют выявлять гетерозиготных носителей мутаций. Очень важна роль биохимических методов анализа при проведении массовых скринингов беременных или новорожденных с целью более раннего выявления наследственных заболеваний.

Ключевая роль в патогенезе любого моногенного заболевания принадлежит первичному биохимическому дефекту – тому белку, который кодируется мутантным геном. Идентификация и анализ первичного биохимического дефекта, определение первичной патологической метаболической цепи – вот главные цели биохимической генетики, решение которых является основой для разработки патогенетических методов профилактики и терапии наследственных заболеваний.

Не менее важна роль биохимических методов при диагностике вторичных нарушений. Например, первичным биохимическим дефектом при мышечной дистрофии Дюшенна/Беккера является недостаточность дистрофина – белка, соединяющего цитоскелет мышечной клетки с внеклеточным матриксом. В результате этого нарушения в крови больных повышается уровень одного из мышечных ферментов креатинфосфокиназы, как в начале заболевания, так и в его развернутой стадии. Более того, содержание этого фермента повышено у 30% гетерозиготных носительниц мутации. Хотя это нарушение является вторичным, но простата тестирования креатинфосфокиназы и стойкость его повышения у больных делают его удобным диагностическим маркером заболевания.

Разнообразие биохимических методов огромно, и они постоянно совершенствуются. Их подразделяют на качественные, количественные и полуколичественные. Качественные реакции позволяют обнаруживать избыточное количество промежуточных метаболитов, накапливающихся при наследственных болезнях обмена в результате блока ферментативной реакции. Они просты, недороги и достаточно чувствительны. Часто в качестве субстрата для качественной реакции используется моча. Полуколичественные и количественные тесты проводятся как с мочей, так и с кровью. Наиболее простые из них измерение пирувата, лактата, ионов аммония, измерение кислотно-щелочного баланса.

Ведущая роль в диагностике наследственных болезней обмена принадлежит высокоточным количественным тестам, использующим методы флуориметрии, спектрофотометрии, хромотографии, электрофореза, масс-спектрометрии. Некоторые методы позволяют одновременно проводить количественную оценку нескольких тысяч метаболических маркеров. Однако эти методы требуют использования достаточно дорогого оборудования и расходных материалов.

В некоторых случаях иммунологические методы анализа белков оказываются более эффективными по сравнению с биохимическими. Среди них следует упомянуть иммуногистохимический м етод, позволяющий проводить анализ белков и определять их локализацию в специализированных клетках и тканях организма.

Иммунологические методы применяют при обследовании больных с иммунодефицитными состояниями (агаммаглобулинемия, атаксия-телеангиэктазия-синдром Луи-Бар и др.), при подозрении на антигенную несовместимость крови матери и плода, при установлении отцовства.

Микробиологические методы используются для анализа присутствия в биологическом образце определенных веществ – аминокислот, сахаров и др., необходимых для роста определенных штаммов микроорганизмов. Этот метод лежит в основе известного теста Гатри, применяемого при диагностике фенилкетонурии, гистидинемии, галактоземии и лейциноза.

 

1.6. Метод спектрографии и флюоресцентнойгибридизации.

В последнее время благодаря успехам молекулярной генетики разработан принципиально новый метод изучения хромосом – метод флюоресцентной гибридизации in situ. Суть метода в последовательной обработке денатурированного препарата хромосом специфическими однонитевыми последовательностями ДНК с присоединенным биотином (ДНК-зонды) и веществами с флюоресцентными красителями. Затем с помощью люминесцентного микроскопа окрашенные хромосомы визуализируются на фоне неокрашенных. Такой метод применяется очень широко от локализации гена до расшифровки сложных перестроек между несколькими хромосомами. Соединение молекулярно-генетических и цитогенетических методов делает почти неограниченными возможности диагностики хромосомных аномалий, как очень сложных, так и очень мелких по размерам. Флюоресцентная гибридизация in situ применяется для учета симметричных хромосомных аберраций у лиц облученных много лет назад ионизирующим излучением. Также этот метод применяется для диагностики анэуплоидий в интерфазных ядрах. Например, специфичным для хромосомы 21 зонд ДНК с биотином, гибридизируют с денатурированными клетками из амниотической жидкости на предметном стекле. В норме, то есть если у плода есть дисомия по хромосоме 21, в ядре будут видны две флюоресцирующие точки. Если у плода трисомия, то в ядре будут видны 3 точки. Такой прием называют интерфазной цитогенетикой. Метод прост, экономичен и требует мало времени (несколько часов).

Спектроскопический анализ хромосом.Другим современным методом является спектроскопический анализ хромосом. В основе метода лежит использование флюоресцентных красителей имеющих сродство к определенным участкам хромосом. При использовании набора специфических зондов с разными красителями каждая пара хромосом имеет свои уникальные спектральные характеристики. Анализ спектра проводится с помощью интерферометра, аналогично используемым для измерения спектра астрономических объектов. Незначительные вариации в спектральном составе учитываются при компьютерной обработки, и затем каждой паре хромосом присваиваются определенные цвета. Анализ кариотипа значительно облегчается, поскольку гомологичные хромосомы окрашиваются в один цвет, а аберрации становятся легко различимы. Такое спектральное кариотипирование используется для выявления транслокаций, нераспознаваемых традиционными методами. Данный метод с успехом применяется в онкоцитогенетике. Благодаря нему удается описать множественные структурные перестройки хромосом, происходящие в опухолевых клетках. Однако широкое использование метода ограничено высокой стоимостью оборудования для анализа

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: