Электропривод - основа развития современного промышленного производства




Введение в специальность(электропривод)

 

Электрический привод (ЭП) играет большую роль в реализации задач повышения производительности труда в разных отраслях народного хозяйства, автоматизации и комплексной механизации производственных процессов. Около 70 % вырабатываемой электроэнергии преобразуется в механическую энергию электродвигателями (ЭД), которые приводят в движение различные станки и механизмы. Современный ЭП отличается широким разнообразием применяемых средств управления – от обычной коммутационной аппаратуры до ЭВМ, большим диапазоном мощностей двигателей, диапазоном регулирования скоростей до 10000:1 и более, применением как тихоходных, так и сверхскоростных ЭД.

Электрический привод является единой электромеханической системой, электрическая часть которой состоит из электродвигательного, преобразовательного, управляющего и информационного устройств, а механическая часть включает в себя все связанные движущиеся массы привода и механизма.

Широкое внедрение электрического привода во все отрасли промышленности и все возрастающие требования к статическим и динамическим характеристикам электроприводов предъявляют повышенные требования к профессиональной подготовке специалистов в области электрического привода.

Электропривод - основа развития современного промышленного производства

Электрический привод – сравнительно молодая отрасль науки и техники, насчитывающая немногим более столетия с момента практического применения. Появление ЭП обусловлено трудами многих отечественных и зарубежных ученых-электротехников. В этом блистательном ряду имена таких крупных ученых как датчанин Х. Эрестед, показавший возможность взаимодействия магнитного поля и проводника с током (1820 г.), француз А. Ампер, математически оформивший это взаимодействие в том же 1820 г., англичанин М. Фарадей, построивший в 1821 году экспериментальную установку, доказавшую возможность построения электродвигателя. Это российские ученые-академики Б.С. Якоби и Э.Х. Ленц, которым впервые удалось создать в 1834 году электродвигатель постоянного тока. Работа Б.С. Якоби по созданию двигателя получила широкую мировую известность, и многие последующие работы в этой области были вариацией или развитием его идей, например, в 1837 году американец Девенпорт построил свой электродвигатель с более простым коммутатором. В 1838 г. Б.С. Якоби усовершенствовал конструкцию электродвигателя, привнеся в него практически все элементы современной электрической машины. Этот электродвигатель, мощностью в 1 л.с., был использован для привода лодки, которая с 12 пассажирами совершила движение со скоростью до 5км/ч против течения Невы. Поэтому 1838 год считается годом рождения электропривода. Уже на этой первой, еще несовершенной модели электропривода обнаружились весьма значительные преимущества его по сравнению с господствовавшими в то время паровыми механизмами – это отсутствие парового котла, запасов топлива и воды, т.е. существенно лучшие массогабаритные показатели.

Однако несовершенство первого электродвигателя, а главное неэкономичность источника электроэнергии – гальванической батареи, которая была разработана итальянцем Л. Гальвани (1737-1798), явились причиной того что, работы Б.С. Якоби и его последователей сразу не получили практического применения. Требовался простой, надежный и экономичный источник электрической энергии. И выход был найден.

Еще в 1833 году академик Э.Х. Ленц открыл принцип обратимости электрических машин, объединивший впоследствии пути развития двигателей и генераторов. И вот в 1870 г. бельгийский изобретатель З. Грамм создал промышленный тип электрического генератора постоянного тока, давший новый импульс в развитие электропривода и внедрению его в промышленность.

Активно начинает внедряться электропривод российскими специалистами в военно-морском флоте (1890-1894 привод рулевого управления, подъемник боезапасов и др.) Электропривод проникает в ткацкое производство, текстильные фабрики, здесь к 1896 году работало значительное число двигателей постоянного тока. Начинает применяться электропривод в городском транспорте – трамвайные линии в городах Киеве, Казани и Нижнем Новгороде (1892) и несколько позже – в Москве (1903) и Петербурге (1907). Однако отмеченные успехи были незначительными. В 1890 году электропривод составлял всего лишь 5% от общей мощности используемых механизмов.

Появившийся практический опыт требовал анализа, системотизации и разработки теоретической базы для последующего освещения путей развития электропривода. Огромную роль здесь сыграл научный труд нашего соотечественника крупнейшего электротехника Д.А. Лачинова (1842-1903), опубликованный в 1880 году в журнале "Электричество" под названием "Электромеханическая работа", заложившей первые основы науки об электроприводе. Д.А. Лачинов убедительно доказал преимущества электрического распределения механической энергии, впервые дал выражение для механической характеристики двигателя постоянного тока с последовательным возбуждением, дал классификацию электрических машин по способу возбуждения, рассмотрел условия питания двигателя от генератора. Поэтому 1880 год – год опубликования научного труда "Электромеханическая работа" считается годом рождения науки об электроприводе.

Наряду с электроприводом постоянного тока пробивал себе дорогу в жизнь и электропривод переменного тока. В 1841 году англичанин Ч. Уитсон построил однофазный синхронный электродвигатель. Но он не нашел практического применения из-за трудностей при пуске. В 1876 году П.Н. Яблочков (1847-1894) разработал несколько конструкций синхронных генераторов для питания изобретенных им свечей, а также изобрел трансформатор. Следующим шагом на пути к ЭП переменного тока явилось открытие в 1888 году итальянцем Г. Феррарисом и югославом Н. Теслой явление вращающегося магнитного поля, что положило начало конструированию многофазных электродвигателей. Феррарисом и Теслой были разработаны несколько моделей двухфазных двигателей переменного тока. Однако двухфазный ток в Европе не получил широкого распространения. Причиной этого была разработка русским электротехником М.О. Доливо-Добровольским (1862-1919) в 1889 году более совершенной трехфазной системы переменного тока. В этом же 1889 году 8 марта он запатентовал асинхронный электродвигатель с короткозамкнутым ротором (АД КЗ), а несколько позднее и с фазным ротором. Уже в 1891 году на электротехнической выставке во Франкфурте на Майне М.О. Доливо-Добровольский продемонстрировал асинхронные электдвигатели мощностью 0,1 кВт (вентилятор); 1,5 кВт (генератор постоянного тока) и 75 кВт (насос). Доливо-Добровольским также были разработаны 3-х фаз-ный синхронный генератор и 3-х фазный трансформатор, конструкции которых остается практически неизменными и в наше время.

Марсель Депре в 1881 году обосновал возможность передачи электроэнергии на расстоянии, и в 1882 была построена первая линия электропередачи протяженностью 57 км и мощность 3 кВт.

В результате вышеперечисленных работ были устранены последние принципиальные технические препятствия к распространению передачи электрической энергии и был создан наиболее надежный, простой и дешевый электрический двигатель, пользующийся в настоящее время исключительным распространением. Более 50 % всей электроэнергии преобразуется в механическую посредством самого массового электропривода на основе АД КЗ.

Первые в России 3-х фазные электроприводы переменного тока были установлены в 1893 году в Шепетовке и на Коломенском заводе, где к 1895 году было установлено 209 электродвигателей общей мощностью 1507 кВт

Почему уделялось такое большое внимание электроприводу и электрификации? Дело очевидно в том, что ЭП является силовой основой выполнения механической работы и автоматизации производственных процессов с высоким КПД, при этом электропривод создает все условия для высокопроизводительного труда. Вот простой пример. Известно, что в течении рабочего дня один человек может при помощи мускульной энергии выработать около 1 кВт/ч, стоимость производства которой составляет (условно) 1 коп. В высоко электрифицированных отраслях промышленности установленная мощность электродвигателей на одного рабочего составляет 4-5 кВт (этот показатель называется электровооруженность труда). При восьмичасовом рабочем дне получаем потребление 32-40 кВт/ч. Это значит, что рабочий управляет механизмами, работа которых за смену эквивалентна работе 32-40 человек.

Еще большая эффективность электропривода наблюдается в горнодобывающей промышленности. Например, на шагающем экскаваторе типа ЭШ-125/125, имеющим стрелу 125 метров и ковш емкостью 125 кубических метров, мощностью одного асинхронного двигателя составляет 28,2 МВт. На прокатных станах установленная мощность электродвигателей составляет более 60 МВт, а скорость прокатки – 126 км/ч.

В настоящее время ЭП занял господствующее положение в народном хозяйстве и потребляет порядка 2/3 всей производимой электрической энергии.

Так что же такое электропривод? Согласно ГОСТ Р 50369-92 электрическим приводом называется электромеханическая система, состоящая в общем случае из взаимодействующих преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов (ИО) рабочей машины (РМ) и управления этим движением в целях осуществления технологического процесса [1]. Данное определение проиллюстрировано на рис. 1.1.

 

 

Рис. 1.1. Структурная схема автоматизированного

электропривода

 

Преобразовательное устройство (преобразователь электроэнергии) – электротехническое устройство, преобразующее электрическую энергию с одними значениями параметров и/или показателей качества в электрическую энергию с другими значениями параметров и/или показателей качества. Отметим, что преобразование параметров может осуществляться по роду тока, напряжению, частоте, числу фаз, фазе напряжения, согласно ГОСТ 18311).

Преобразователи классифицируют по току (постоянного и переменного тока), а также по элементной базе – тиристорные и транзисторные преобразователи.

Электродвигательное устройство (электромеханический преобразователь) – электротехническое устройство, предназначенное для преобразования электрической энергии в механическую или механической в электрическую.

Управляющее информационное устройство. Управляющее устройство предназначено для формирования управляющих воздействий в электроприводе и представляет собой совокупность функционально связанных между собой электромагнитных, электромеханических, полупроводниковых элементов. В простейшем случае управляющее устройство может сводится к обычному рубильнику, включающему ЭД в сеть. Высокоточные ЭП содержат в управляющем устройстве микропроцессоры и ЭВМ. Информационное устройство предназначено для получения, преобразования, хранения, распределения и выдачи информации о переменных ЭП, технологического процесса и сопредельных систем для использования в системе управления электропривода и внешних информационных системах.

Передаточное устройство - это механический преобразователь, предназначенный для передачи механической энергии от электродвигателя к исполнительному органу рабочей машины и согласованию вида и скоростей их движения. В качестве передаточного устройства могут выступать редукторы, клиноременные и цепные передачи, электромагнитные муфты скольжения и т.п.

Рабочая машина – машина, осуществляющая изменение формы, свойств, состояния и положения предмета труда. Исполнительный орган рабочей машины – движущийся элемент рабочей машины, выполняющий технологическую операцию.

Данные определения необходимо дополнить.

Система управления электропривода – совокупность управляющих и информационных устройств и устройств сопряжения ЭП, предназначенных для управления электромеханическим преобразованием энергии с целью обеспечения заданного движения исполнительного органа рабочей машины.

Система управления электроприводом внешняя по отношению к электроприводу система управления более высокого уровня, поставляющая необходимую для функционирования электропривода информацию.

Применяемые в электроприводе электродвигатели могут быть переменного и постоянного тока. По мощности электрические машины можно условно разделить на:

микромашины – до 0,6 кВт;

машины малой мощности – до 100 кВт;

машины средней мощности – до 1000 кВт;

большой мощности – свыше 1000 кВт.

 

По скорости вращения:

тихоходные – до 500 об/мин.

средней скорости – до 1500 об/мин.

быстроходные – до 3000 об/мин.

сверхбыстроходные – до 150000 об/мин.

 

По номинальному напряжению бывают низковольтные двигатели (до 1000 В) и высоковольтные (выше 1000 В).



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: