Системы очистки сточных вод




Отходы жизнедеятельности человека, вода, использованная для бытовых нужд и в технологических процессах, а также дождевые и талые воды с городской территории удаляются через систему водоотведения и подаются на общегородские очистные сооружения. При отсутствии или перегрузке городских очистных сооружений в водные объекты вынужденно сбрасываются неочищенные или недостаточно очищенные сточные воды, что приводит к загрязнению водного объекта на значительном протяжении. При ограниченной производительности городских очистных сооружений дождевые и талые воды частично или полностьюсбрасываются в водные объекты без очистки.

Система водоотведения, называемая еще канализационной системой, включает следующие основные элементы: внутренние водоотводящие системы в жилых зданиях или производственных помещениях; внутриквартальные или внутриплощадные водоотводящие сети; внешние (внеплощадные) водоотводящие сети; регулирующие резервуары; насосные станции и напорные трубопроводы; очистные сооружения; выпуски очищенных сточных вод в водные объекты; аварийные выпуски сточных вод в водные объекты. Водоотводящие системы подразделяются на общесплавные, раздельные и комбинированные. В свою очередь раздельные системы подразделяются на полные раздельные, неполные раздельные и полураздельные.

Общесплавная система водоотведения имеет одну водоотводящую сеть, предназначенную для отвода сбросных вод всех категорий: хозяйственно-бытовых, производственных и дождевых.

Ливневые выпуски устраиваются таким образом, чтобы исключить возможность переполнений главного коллектора во время сильного дождя. Конструкция и размещение ливневыпусков обеспечивают включение их в работу, т.е. сброс вод в реку, не ранее, чем через 30 минут после начала интенсивного ливня.За это время наиболее загрязненная часть поверхностного стока с городской территории по общесплавному коллектору поступает на городские очистные сооружения, а менее загрязненная часть при наполнении главного коллектора начнет поступать непосредственно в реку. Понятно, что выпуск неочищенных сточных вед в реку связан с ее возможным загрязнением, поэтому размеры выходных отверстий ливневыпусков и соответственно расход сбрасываемых через них неочищенных вол определяются исходя из ассимилирующей способности водотока. Применение отведения целесообразно при наличии в городе полноводной реки.

Полная раздельная система водоотведения имеет два илибольше коллекторов, предназначенных для отдельного отвода сточных вод определенной категории.

Хозяйственно-бытовые сточные воды отводят на общегородские очистные сооружения, где производят их очистку до кондиций, удовлетворяющих условиям сброса в водные объекты. Очистку производственных сточных вод осуществляют на специальных очистных сооружениях данного промышленного объекта или группы таких объектов. После очистки производственные сточные воды могут быть использованы для технического водоснабжения, поданы на общегородские очистные сооружения для доочистки или сброшены в водный объект. Талые и дождевые воды по коллектору ливневой канализации подаются на очистку и в дальнейшем используются для технического водоснабжения или сбрасываются в водные объекты.

Неполная раздельная система водоотведения предусматривает отвод хозяйственно-бытовых и производственных сточных вод по единому коллектору. Отвод дождевых вод производится отдельно по коллекторам, лоткам или канавам. Как правило, неполная раздельная система используется для небольших объектов водоотведения и является первоначальным этапом создания полной раздельной системы.

Полураздельная система водоотведения предусматривает отвод смеси хозяйственно-бытовых и производственных сточных вод по одному общему коллектору, а дождевых вод по-другому. Дождевые и производственно-бытовые коллекторы по трассе водоотведения пересекаются. В месте пересечения устанавливаются разделительные камеры, с помощью которых дождевой сток полностью или частично из дождевого коллектора попадает в главный. При сравнительно малых расходах дождевых вод они полностью поступают в главный коллектор. При больших расходах дождевых вод в главный коллектор поступает лишь часть дождевого стока, протекающего по нижней (донной) части дождевого коллектора. Это наиболее загрязненная часть дождевого стока, отводимого с прилегающей территории в начальный период дождя, когда происходит смыв основной массы загрязняющих веществ. Поступающая в последующий период менее загрязненная часть дождевого стока через распределительную камеру отводится в водный объект без очистки.

Комбинированная система водоотведения представляет собой сочетание общесплавной системы водоотведения с полной раздельной. Такая система формируется по мере развития и реконструкции канализационной сети города. В старой части города может функционировать общесплавная система водоотведения, а в районах новостроек создается полная раздельная система.

Вода, поступающая в городскую систему водоотведения, обычно представляет собой смесь хозяйственно-бытовых и производственных сточных вод. По системе водоотведения эти воды подаются на общегородские очистные сооружения. Если позволяет производительность этих сооружений, сюда же поступают частично или полностью дождевые и талые воды. Полный комплекс общегородских очистных сооружений включает блоки: механической, биологической очистки, доочистки, обеззараживания, обработки осадка (рис. 9).

Механическая очистка обеспечивает удаление из сточных вод крупных включений, взвешенных и плавающих примесей. В состав блока механической очистки входят решетки, иногда с дробилками, песколовки, преаэраторыи первичные отстойники.

Решетки предназначены для улавливания крупных включений, которые при необходимости измельчаются в дробилках. На решетках достигается практически полное извлечение из очищаемых сточных вод крупных включений.

В песколовках, представляющих собой емкости определенных размеров, благодаря резкому уменьшению скорости течения очищаемой жидкости происходит осаждение взвешенных веществ. В песколовках удаляется из сточной воды примерно 40—60 % мелких механических примесей. Из песколовок осадок подается на песковые площадки.

В преаэраторах происходит первичное насыщение сточных вод кислородом путем подачи сжатого воздуха, что существенно улучшает процесс биологической очистки. В сточных водах, поступающих из систем водоотведения, растворенный кислород практически отсутствует. Смешение очищаемых вод с пузырьками воздуха способствует отделению нефтепродуктов и других плавающих примесей, которое происходит в первичных отстойниках,называемых также нeфтeловyшкaми. Степень удаления плавающих примесей составляет 60—80 %. Всплывшие нефтепродукты специальными скребками собираются в бочки и направляются на регенерацию или на сжигание.

Из первичных отстойников очищаемые сточные воды поступают в блок биологической очистки, где происходит деструкция органических соединений, поддающихся биохимическому окислению. Из сооружений биологической очистки наибольшее распространение получили аэротенки. Они представляют собой железобетонные, реже кирпичные или металлические удлиненные емкости, в которых происходит контакт очищаемых сточных вод с активным илом при одновременном насыщении их кислородом воздуха.

Активный ил представляет собой специально культивируемое сообщество микроорганизмов, пищей для которых служат органические вещества, содержащиеся в сточных водах.

Рис. 9. Схема полной биологической очистки городских сточных вод в аэротенках

РХ - удаление солей фосфора добавкой реагентов; Д - удаление солей азота в денитрификаторах; ОД - удаление солей азота в отстойниках-денитрификаторах.

Нормальное содержание активного ила в очищаемых сточных водах составляет 2г/дм3 (по сухому веществу). Для интенсификации процесса деструкции органических соединений в аэротенки постоянно нагнетается сжатый воздух в соотношении 10:1 — к объему очищаемой жидкости. Аэротенки в блоке биологической очистки располагаются таким образом, чтобы очищаемая сточная вода, проходя через них последовательно один за другим, находилась в контакте с активным илом в течение 18—20 часов. Температура воды в аэротенках должна быть не ниже +5 ºС и не выше +40 ºС. Степень деструкциив аэротенках органических веществ, поддающихся биохимическому окислению, составляет около 90 %.

Очищенные в аэротенках сточные воды поступают во вторичные отстойники, где происходит оседание активного ила, который попал сюда из аэротенков вместе с водой. Микроорганизмы активного ила при оседании адсорбируют своей чешуйчатой поверхностью мельчайшие взвеси, оставшиеся в очищаемых сточных водах после прохождения песколовок и первичных отстойников, а также ионы тяжелых металлов. Степень извлечения металлов за счет адсорбции микроорганизмами колеблется от 10 до 60 %.

После вторичных отстойников городские сточные воли считаются прошедшими биологическую очистку и могут быть сброшены в поверхностные водные объекты. Перед сбросом в обязательном порядке производится их обеззараживание путем обработки хлорной водой. Приготовление хлорной воды производится в хлораторной растворением активного хлора в воде. После хлорирования сбросная вода должна пройти дегазацию, так как попадание активного хлора в водный объект может принести к гибели рыбы. Дегазация сбросных вод происходит в каналах и быстротоках по пути следования от места хлорирования до места выпуска в водный объект. В некоторых странах вместо хлорирования применяют озонирование. И тот, и другой способы обеззараживания воды имеют свои преимущества и недостатки. В нашей стране для обеззараживания сточных вод применяют в основном хлорирование, реже — другие методы.

Очистка сравнительно небольших расходов сточных вод может быть обеспечена на более простых по конструкции сооружениях, принцип действия которых также основывается на процессах биохимического разложения органических веществ сообществом микроорганизмов.

Наиболее простыми очистными сооружениями, используемыми человеком уже более пяти столетий, являются поля фильтрации. Онипредставляют собой спланированные площадки (карты) с уклоном до 0,02, обвалованные дамбами, площадью от нескольких квадратных метров до 1,5 2га. Поля фильтрации устраиваются обычно на проницаемых грунтах — песках, супесях, легких суглинках. Наряду с биологической очисткой сточных вод, в которой принимают участие сообщества микроорганизмов как водных, формирующихся на поверхности карт, так и почвенных, развивающихся в толще проницаемых грунтов, в процессе фильтрации воды через породы основания происходит ее дополнительная механическая и отчасти физико-химическая очистка. Преимуществом полей фильтрации является простота устройства и эксплуатации. К их недостаткам следует отнести необходимость занятия больших площадей, возможность загрязнений подземных вод и атмосферного воздуха газообразными продуктами разложения хозяйствененно-бытовых вод, которое ощущается на расстоянии до 200 м от полей фильтрации.

Разновидностью полей фильтрации являются поля подземной фильтрации, в которых на глубине 1,5—1,8 м укладываются дренажные трубы. По ним очищенная вода отводится с полей фильтрации и используется для орошения сельскохозяйственных угодий.

Прогрессивным развитием методов естественной биологической очистки являются биоинженерные сооружения типа биоплато. Для очистки и доочистки сточных вод населенных пунктов могут быть использованы конструкции типа инфильтрационных и поверхностных биоплато.

Инфильтрационное биоплато — инженерное сооружение, размещенное, как правило, в котловане глубиной до 2 м, на дне которого устраивается противофильтрационный экран из полиэтиленовой пленки. Поверх экрана укладывается горизонтальный дренаж и слой щебня, песка, керамзита или другого фильтрующего материала. Поверхность сооружения засевается камышом, тростником, рогозом и другими местными видами высшей водной растительности из расчета не менее 10—12 стеблей на 1м2. По технологии биоплато в очистке воды принимают участие сообщества водных (на поверхности блока) и почвенных (в фильтрующем слое) микроорганизмов, высшая водная растительность и сам фильтрующий слой.

Поверхностное биоплато также размещается в котловане и имеет противофильтрационный экран. Роль дренажа выполняет каменная наброска, вместо фильтрующего слоя укладывается грунт котлована, поверхность которого засаживается высшей водной растительностью. Высшая водная растительность, кроме очистительной функции, обеспечивает повышенную транспирацию (испарение) очищаемой жидкости в летний период примерно на 10—15 %.

Очистные сооружения по технологии биоплато состоят, как правило, из нескольких блоков, располагаемых каскадом, причем блок поверхностного биоплато является концевым. В состав сооружений биоплато в качестве концевого может быть включен болотистый участок (естественное поверхностное биоплато) с наличием зарослей высшей водной растительности. Начальным блоком сооружений является отстойник, где происходит удаление крупных включений и взвешенных веществ. По технологии биоплато обеспечивается очистка хозяйственно-бытовых сточных вод по БПК — до 5—10 мг/дм3, по взвешенным веществам — до 8— 12 мг/дм3, причем наличие взвешенных веществ в основном связано с выносом их из фильтрующего слоя. Значительно (на 40—70 % ) снижается содержание соединений азота и фосфора. Сооружения биоплато, удачно расположенные по рельефу местности, не требуют применения электроэнергии, химикатов и обеспечивают надежную работу, как в летний, так и в зимний период.

Методы очистки сточных вод подразделяются на механические, физико-химические и биологические.

Механические методы очистки обеспечивают извлечение из очищаемых вод взвешенных и плавающих примесей. Наиболее простой способ удаления этих примесей — отстаивание, в процессе которого взвешенные вещества оседают надно, а плавающие примеси всплывают на поверхность отстойников. Отстойники устраиваются горизонтальные, вертикальные и радиальные.

В горизонтальном отстойнике длина в 8—12 раз больше его глубины.Отстойники бывают непрерывного или периодического действия. В отстойниках непрерывного действия отделение примесей происходит благодаря резкому уменьшению скорости движенияочищаемой жидкости. Продолжительность прохождения жидкости через отстойник составляет 1—3 часа. Эффективность осветления воды — от 40 до 60 %. В отстойниках периодического действия продолжительность отстоя жидкости составляет несколько часов, после чего происходит удаление всплывших примесей, осветленной воды и осадка. Затем процесс повторяется.

Глубина (высота) вертикального отстойника в несколько раз превышает его горизонтальный размер. Разделение твердой и жидкой фаз происходит за счет уменьшения скорости потока и изменения его направления на 180º. Вертикальные отстойники более компактны, однако их эффективность на 10—20 % ниже, чем у горизонтальных.

В конструкции радиального отстойника реализован принцип действия вертикального и горизонтального отстойников. В центральной его части происходит смена направления потока очищаемой жидкости, а от центра к периферии он работает в режиме горизонтального отстойника. Это позволяет получать достаточно компактные сооружения большой производительности. Эффективность осветления в радиальных отстойниках достигает 60 %. Глубина их колеблется от 1,5 до 5 м, диаметр — от 15 до 60 м.

Для повышения эффективности процесса осветления к очищаемой в отстойниках жидкости добавляют коагулянты — вещества, которые при взаимодействии с водой образуют хлопьеобразные частицы размером 0,5—3 мм с развитой поверхностью, обладающие также небольшим электрическим зарядом. При оседании эти хлопья захватывают из жидкости взвешенные и коллоидные частицы. В качестве коагулянтов применяются сернокислый алюминий, хлорное железо и др. Расход их составляет от 40 до 700 кг/м3 очищаемой жидкости.

Интенсификации процесса коагуляций способствует добавка флокулянтов — веществ, обеспечивающих агрегирование пластин коагулянтов и ускоряющих тем самым их осаждение. В качестве флокулянтов применяют клейкие вещества: крахмал, декстрин, силикатный клей. Весьма эффективным является синтетический флокулянт —полиакриламид (ПАА), широко использующийся также при подготовке питьевой воды. Доза применения ПАА колеблется от 0,5 до 25 г/м3 очищаемой жидкости. Внедряются в практику и другие коагулянты и флокулянты на основе активных полимеров, дозы применения которых в десятки раз меньше.

Тонкодисперсные частички, которые не удается извлечь из жидкости в отстойниках, могут быть удалены с помощью фильтрования. В качестве фильтрующего слоя используются зернистые материалы (песок, гранитная или мраморная крошка, керамзит и др.), ткани и нетканые полотна (хлопчатобумажные, шерстяные, синтетические, изасбеста, стекловолокна и др.), металлические сетки, перфорированные пластины, пористая керамика. Для ускорения процесса фильтрование производится под давлением или с помощью вакуума. Для извлечения нефтепродуктов, масел и других эмульгированных примесей применяются фильтры из полиуретана. Эффективность удаления взвешенныхэмульгированных примесей методом фильтрования достигает 99 % и более.

Физико-химические методы очистки обеспечивают удаление из воды, как правило, растворенных веществ, неподдающихся или плохо поддающихся биологической очистке.

Наиболее простым и распространенным методом физико-химической очистки является нейтрализация, которая заключается в подкислении щелочных вод (с рН>8,5) и подщелачивании вод (с рН<6,5). При наличии на производстве кислых и щелочных вод нейтрализация достигается их смешением. При отсутствии одной из категорий вод нейтрализация осуществляется путем добавки реагента. Для нейтрализации кислых вод лучше всего использовать отходы щелочей — гидроокиси натрия или калия, не дающие осадка. При использовании гидроокиси кальция в виде известкового молока образуется шлам, который необходимо удалять, обезвреживать и утилизировать. Нейтрализация кислых вод достигается также фильтрованием их через слой известняка, доломита, магнезита, шлака или золы.

Для нейтрализации щелочных вод используется отработанная серная кислота. Высокоэффективным методом нейтрализации щелочных вод является продувка через них газовых выбросов, содержащих оксиды серы, углерода, азота и другие кислотообразующие окислы. Таким образом обеспечивается одновременно эффективная очистка дымовых газов.

Реагентная обработка применяется для очистки вод от цианидов, роданидов, ионов тяжелых металлов и ряда других примесей. Вид применяемого реагента определяется составом примесей, подлежащих удалению из воды. Так, разложение цианидов достигается обработкой воды жидким хлором или веществами, выделяющими активный хлор, — хлорной известью, гипохлоридом кальция или натрия.

Окислением удается добиться деструкции таких соединений, как альдегиды, фенолы, анилиновые красители, серосодержащие органические вещества и др. В качестве окислителей применяют кислород, озон, перекись водорода, пиролюзит. В процессе окисления происходит разложение вредных примесей до простых окислов или образование соединений поддающихся биохимическому разложению.

Извлечение из воды ионов ртути, хрома, кадмия, свинца, никеля, меди, мышьяка основано на переводе их из раствора в нерастворимый осадок. С этой целью очищаемую воду обрабатывают соединениями натрия или кальция — сульфитом, бисульфитом или сульфидом, карбонатами или гидроокисью. Образующийся шлам удаляют, утилизируют или складируют.

Одним из высокоэффективных методов очистки является ионный обмен, который представляет собой процесс взаимодействия очищаемой жидкости с зернистым материалом, обладающим способностью заменять ионы, находящиеся на поверхности зерен на ионы противоположного заряда, содержащиеся в растворе. Такие материалы называются ионитами. Ионитными свойствами обладают природные минералы — цеолиты, апатиты, полевые шпаты, слюда, различные глины. Синтезировано большое число высокоэффективных ионитов, обладающих селективными свойствами. К ним относятся силикагели, алюмогели, пермутиты, сульфоугли и ионообменные смолы — синтетические высокомолекулярные органические соединения, углеводородные радикалы которых образуют пространственную сетку с фиксированными на ней ионообменными функциональными группами. Иониты не растворяются в воде, обладают достаточной механической прочностью, обеспечивают возможность их рeгенерации с получением ценных веществ, извлекаемых из очищаемых вод. Существуют ионообменные установки периодического и непрерывного действия.

Другим универсальным и высокоэффективным методом очистки вод является сорбция. Сорбция применяется преимущественно для очистки сточных вод, которые содержат высокотоксичные вещества, неподдающиеся биохимическому окислению. Метод сорбционной очистки основан на адгезии (прилипании) растворенных веществ к поверхности и порам сорбента — вещества, обладающего разветвленной внешней и внутренней (поры) поверхностью. Наилучшим сорбентом является активированный уголь. Сорбционными свойствами обладают золы, шлаки, опилки, коксовая крошка, торф, керамзит и др.

Флотационная очистка применяется для удаления из воды поверхностно-активных веществ (ПАВ), нефтепродуктов, жиров, смол и др. Процесс флотации заключается в сорбировании содержащихся в воде примесей поверхностью пузырьков воздуха, нагнетаемого в очищаемую жидкость. В практике очистки вод используются напорные, безнапорные, вакуумные и электро-флотационные установки. Наибольшее распространение получили напорные установки. В таких установках вода сначала насыщается воздухом под давлением, а затем подается в открытый резервуар, где происходит выделение пузырьков и сорбирование ими содержащихся в воде примесей. Иногда сжатый воздух подается в нижний слой жидкости, находящейся в резервуаре (флотаторе).

Одной из разновидностей электрохимической очистки является электродиализ, который основан на разделении находящихся в растворе ионизированных веществ по отсекам, отгороженным пронимаемыми мембранами. Высокий эффект достигается при использовании мембран из ионитов. Электродиализ является эффективным методом опреснения вод, в частности морской воды для последующего использования ее в питьевом водоснабжении. Установки опреснения морской воды успешно используют в Израиле, других странах Ближнего Востока. С 1973 года в Казахстане, на полуострове Мангышлак в Каспийском море, эксплуатируется одна из крупнейших в мире установок поопреснению морской воды. Энергией ее обеспечивает построенная здесь АЭС. Электрохимические методы отличаются универсальностью, обеспечивают высокую эффективность очистки, хорошо поддаются автоматизации. Однако их недостатком, как уже отмечалось, является большой расход электроэнергии.

Производственные сточные воды, как правило, проходят очистку на самом предприятии и в дальнейшем могут быть использованы этим же предприятием, переданы для использования другому предприятию, сброшены в водный объект или по системе водоотведения направлены на общегородские очистные сооружения. Необходимая степень очистки городских сточных вод определяется условиями сброса сточных вод в водные объекты.

Очистительные возможности общегородских очистных сооружений, основным звеном которых является комплекс биологической очистки, довольно ограничены. На сооружениях биологической очистки из сточных вод практически не извлекаются ионы тяжелых металлов, не подвергаются деструкции искусственно синтезированные органические вещества. Поэтому в составе производственных сточных вод, подаваемых на общегородские очистные сооружения, содержание веществ, неподдающихся или плохо поддающихся биохимическому окислению, должно быть ограничено или они должны отсутствовать вовсе.

Активный ил, представляющий собой определенным образом сформировавшееся сообщество микроорганизмов и который является главным «рабочим» инструментом биологической очистки, может быть уничтожен или в значительной мере повреждён под воздействием кислот, щелочей, токсичных веществ или высокой температуры. Поэтому подаваемые на биологическую очистку производственные сточные воды не должны губительно действовать на активный ил.

Исходя из этого, запрещается сбрасывать в городские системы водоотведения производственные сточные воды:

• имеющие рН менее 4,0 и более 9,0;

• при показателях ХПК, более чем в 2,5 раза превышающих БПК5 или более чем в 1,5 раза превышающих БПКполн, что свидетельствует о значительных концентрациях в сточных водах органических соединений, неподдающихся биохимическому окислению;

• содержащие токсичные и радиоактивные вещества, возбудителей инфекционных заболеваний, а также вещества, для которых не установлены ПДК;

• с содержанием взвешенных и всплывающих веществ свыше 500 мг/дм3;

• с температурой выше 40 °С;

• кислоты, щелочи, растворители, смолы, бензин, мазут и другие нефтепродукты;

• растворы, содержащие сероводород, сероуглерод, легколетучие углеводороды;

• вещества, способные засорять трубы, колодцы, решетки или отлагаться на стенках труб;

• горючие примеси и растворенные газообразные вещества, способные образовывать взрывоопасные смеси, агрессивные газы с разрушающим коррозионным воздействием на канализационные сети и сооружения.

Сброс сточных вод промышленных предприятий в городскую систему водоотведения должен производиться равномерно в течение суток. Залповые сбросы не допускаются.

Сброс сточных вод в водные объекты после очистки на общегородских очистных сооружениях регламентируется нормативами предельно допустимых сбросов загрязняющих веществ (ПДС). Учитывая ограниченные очистительные возможности общегородских очистных сооружений, управление по эксплуатации этих сооружений устанавливает для своих абонентов-предприятий, сбрасывающих сточные воды в городскую систему канализации, лимиты приема по количеству и составу промстоков. Лимиты устанавливаются таким образом, чтобы обеспечить нормативные условия сброса очищенных на общегородских сооружениях сточных вод в водный объект. Для соблюдения установленных каждому предприятию лимитов производится локальная очистка производственных сточных вод, как правило, на самом предприятии. Иногда несколько предприятий организуют совместную очистку своих сточных вод.

Сброс сточных вод в водные объекты относится к одному из видов специального водопользования и осуществляется на основе разрешения, выдаваемого местными органами экологической безопасности. Отведение сточных вод в водные объекты регламентируется нормами предельно допустимых сбросов веществ (ПДС). ПДС — это максимально допустимая масса вещества, отводимая со сточными водами в единицу времени, которая позволяет обеспечить соблюдение норм качества воды в контрольном створе водного объекта для наихудших условий водопользования.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-10-17 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: