Как возбуждается нервная клетка?




В состояние покоя любая живая (нервная, мышечная, железистая, нервное волокно) клетка изнутри заряжена отрицательно, а снаружи положительно. Чтобы в этом убедиться подводят два электрода, к внешней мембране клетки, между ними измерительный прибор, который регистрирует ноль на экране – нет разницы потенциалов между двумя точками на мембране. Затем один электрод вводим внутрь, и касаемся внутренней поверхности мембраны, в результате получаем резкий скачок на экране прибора, показатели которого зависят от клетки, с которой проводится опыт, от –30 до -90 мВ. Вывод: есть разность потенциалов между наружной и внутренней поверхностями мембраны.

Так заложено природой, что внутри клетки (с внутренней стороны мембраны) избыток ионов калия, концентрация ионов калия всегда больше в клетке, чем в окружающей среде. Каким же образом создается разница в потенциалах? Внутри калия много, снаружи калия мало, мембрана в состоянии покоя проницаема для ионов калия. Калий будет выходить из клетки, по законам диффузии. Энергия заложена в разнице концентраций, это происходит без затрат энергии. Калий (внутри он заряжен положительно) выходит из клетки, и выносит с собой положительный заряд, и теперь этот положительный заряд не выпускает калий. Создается равновесность потенциалов по калию, т. е. уравновешиваются две силы:

Первая - это диффузия, которая выталкивает калий из клетки,

Вторая – это электростатическая сила, не выпускает калий из клетки.

В каждой клетки свой равновесный потенциал.

Что можно очень легко изменить, чтобы мембранный потенциал стал меняться? - концентрацию калия в окружающей среде. Если мы увеличиваем концентрацию калия в окружающей среде, из клетки будет меньше выходить калия. Если уравняем концентрацию калия в клетке и в окружающей среде, клетка будет мертвой и ни к чему не способной.

 

При возбуждении:

Сначала меняется проницаемость мембраны для калия, и для натрия. Для калия проницаемость резко понижается, а для натрия резко возрастает. Если мы будем раздражать мембрану, то повышается проницаемость для натрия, натрий начинает входить в клетку. Теперь мембрана дэполяризуется, внутри у нас будет плюс, а снаружи минус, причем не до нуля.

 

После ответа на один стимул, мембрана должна вернуться в состояние покоя, чтобы ответить на другой стимул. Для чего нам нужен фермент, который разрушает медиатор? Медиатор возбуждает мембрану постсинаптическую, он должен быть разрушен для восстановления в клетке состояния покоя. Состояние покоя восстанавливается через процесс реполяризации. Этот процесс возникает потому, что инактивируются натриевые каналы. Сначала они закрыты, потом они открыты, а на пике деполяризации они инактивируются, т.е. они не могут дальше открываться. В этот момент открывается канал для калия, калий выходит из клетки и восстанавливается исходный мембранный потенциал. Количество каналов подсчитано, структура их определена за счет блокаторов: -калиевые каналы блокируются тетроэтиламонием, в результате не будет процесса рэполяризации;

-натриевые каналы блокируются – тетродотоксином, в результате не возникает потенциал действия при раздражении мембраны.

При раздражении возникает потенциал действия, который обычно называем или возбуждение, или сигнал, или биопотенциал. При слабом раздражении может открыться недостаточное количество каналов для натрия, т.е. есть критический уровень деполяризации (КУД) или порог. Например на мышцу наносим стимул, а мышца не сокращается, там происходит локальная деполяризация, которая не приводит к сокращению мышцы, локальный процесс дэполяризации не достигает КУД.

 

Если натрий в состоянии возбуждения входит в клетку, в итоге в клетке повысится концентрация натрия. Если калий уходит из клетки, в итоге в клетке понизится концентрация калия. У нас нарушится та исходная разность концентраций, которая обеспечивает и потенциал покоя и потенциал действия. Калиево-натриевый насос – это белковая молекула, их задача перекачивать калий в клетку, а натрий из клетки, т. е. он работает против концентрационного грэдиента. В этом случае необходима энергия, АТФ. Если мы энергию заблокируем, то насосы работать не будут. Постепенно будет накапливаться в наружной среде калий, во внутренней – натрий, и мышечное волокно постепенно перестает работать.

 

 

По отношению к нервной клетке.

 

Как происходит передача возбуждения при осуществлении движения. Мотонейрон, его аксон выходит из передних рогов, подходит к скелетной мышце. Каждое отдельное нервное волокно иннервирует отдельное мышечное волокно, к мышце подходит целый нерв, который ее иннервирует. Аксонная терминаль, везикулы, в которых содержится ацетилхолин. Именно работая с мотонейронами, Дейл сформулировал свой принцип:

«в одном нейроне синтезируется один какой-то медиатор »

Доказательство ниже. Рисуем: мотонейрон, миэлиновая оболочка, аксонная терминаль. Доказано, что в аксонной терминале выделяется ацетилхолин. Действительно это медиатор? Нужно было найти фермент, который синтезирует ацетилхолин – нашли, и нашли фермент, который разрушает ацетилхолин - это холинэкстераза. Ацетилхолин выделился, провзаимодействовал с Н-холинорецепторами, и дальше происходит возбуждение мышечного волокна. Окончание мотонейрона, мышечное волокно. Постсинаптическая мембрана в невромышечном синаптическом контакте имеет сложное строение для увеличения площади. В постсинаптической мембране содержатся Н-холинорецепторы, ацетилхолин взаимодействует с Н-холинорецепторами в результате чего мышечное волокно обязательно сокращается.

 

В постсинаптической мембране возникают процессы, результат мы видим – мышечное волокно сократилось. Для того, чтобы Мышечное волокно сократилось в нем тоже должен возникнуть потенциал действия. Вначале возникают потенциалы концевой пластинки ПКП – это маленькие деполяризации. Выделяется медиатор, сначала возникает один ПКП, другой ПКП … Они суммируются и обязательно достигают критического уровня деполяризации, и обязательно возникает потенциал действия.

 

Цепочка: … потенциал действия в нервном волокне, выделяется медиатор, взаимодействует с Н-холинорецепторами, возникает потенциал в концевой пластинке, они суммируются между собой потенциалы концевой пластинки, все вместе достигают критического уровня деполяризации, в ответ на это возникает потенциал действия в мышечной мембране, мышечное волокно сокращается.

 

Если потенциал действия не распространяется по аксону мотонейрона. В этом случае выделяются квантомедиаторы, т. е выделяется чуть-чуть ацетилхолина. Никогда не бывает, чтобы мотонейрон был абсолютно заторможен. Даже при самом большом расслабления мышцы чуть-чуть сокращены, есть такой тонус мускулатуры. Когда у нас потенциал действия не приходит, в постсинаптической мембране возникает миниатюрные потенциалы – это маленькая деполяризация, которая не вызывает потенциал действия. Если ацетилхолин выделился, деполяризация все равно должна возникнуть, но эти миниатюрные потенциалы, даже если суммируются, они не могут вызвать такую деполяризацию, чтобы у нас лавинообразно натрий пошел в клетку.

 

Это то, что происходит на постсинаптической мембране мышечного волокна, а что в нервной клетке происходит?

 

Нервная клетка, сюда приходит по аксону потенциал действия, после чего выделился медиатор. Если пришел сигнал только по одному, двум, трем аксонам к одной нервной клетке, с ней ничего не произойдет. Потому, что на теле одного аксона заканчиваются до тысячи окончаний других нервных клеток. Мембрана дэполяризуется, но деполяризация возникает и угасает. Такая деполяризация называется ВПСП – возбуждающий постсинаптический потенциал.

 

В нервной клетке, в нервном волокне, мышечном волокне есть такое явление как рефрактерность, т. е. если нервное волокно возбудилось, то при повторном сигнале оно уже не возбудимо, т. е. натриевые каналы больше уже раскрываться не могут. Самый большой рефрактэрный период был обнаружен у сердечной мышцы. Сердце сокращается затем расслабляется, естественно находится в состоянии невозбудимости, которое необходимо, чтобы закончилась одна систула, после этого миокарт должен прийти в такое состояние, чтобы снова возбуждаться. Для сердца нужны ритмичные сокращение – расслабление, поэтому у сердца самый большой рефрактэрный период. Меньше рефрактерный период у скелетных мышц. Самый маленький рефрактэрный период у нервных волокон, которое возбуждаются с частотой 400 импульсов в сек.

Есть период рефрактерности т. е невозбудимости. Например, придет важный сигнал, а клетка в состоянии рефрактэрности. Поэтому не любой сигнал вызывает возбуждение нервной клетки. Если к большому числу возникают стимулы, в результате процесса суммации деполяризация достигает критического уровня и в клетке возникает потенциал действия.

 

Суммация может быть пространственной, а может быть временной.

Пространственная возникает тогда когда ВПСП возникает на большей части мембраны нервного волокна.

Временная возникает при повышении частоты раздражающих стимулов, когда следующий стимул приходит, а предыдущие еще не успели угаснуть.

 

Рефрактэрный период начинается с точки ____. Потенциал действия – это процесс возбуждения, процесс дэполяризации, и ВПСП – это тоже процесс деполяризации.

Разница между потенциалом действия и ВПСП:

- потенциал действия возникает по закону все или ничего, т е если раздражающий стимул достиг порога то потэнциал обязательно возникает и уже не меняется.

- ВПСП – градуальный процесс, он зависит от количества медиаторов.

- Задача потенциала действия, если он возник дальше распространяться.

- ВПСП – это локальный процесс.

- ВПСП, ПКП суммируются

- Потенциалы действия суммироваться не могут.

 

Еще раз принцип ДЕЙЛА: «в одном нейроне возникает один медиатор»:

У мотонейрона, пока миэлиновая оболочка не началась, где-то около сомы, как правило, есть веточка – коллотераль, из нее тоже выделяется ацетилхолин. Отсюда ДЕЙЛ сделал вывод, что в каждом нейроне вырабатывается только один медиатор. В ЦНС существуют медиаторные системы, в каждой из которых вырабатывается свой медиатор, если вырабатывается ацетилхолин – холинэргическая и т. д.

 

ГАМэрбическая система – тормозная система в мозге. Что происходит при торможении? Если выделяется тормозный медиатор, например гамаминомаслянная кислота приводит к тому что в клетку начинает входить хлор. В результате увеличится разность потенциалов между внутренней и внешней поверхностью, возникает гиперполяризация мембраны. Возникает ТПСП – тормозные постсинаптические потенциалы. Они тоже обладают свойством суммации, они также локальны, как и ВПСП. Когда возникает ТПСП, порог возбудимости резко повышается, а возбудимость понижается.

 

Критика принципа ДЕЙЛА

 

В гипоталамусе обнаружили нейросекреторные клетки, в которых содержатся нейропептиды: статины и либерины. Они выполняют свою эндокринную функцию, статины тормозят выработку гормонов в гипофизе, либерины – усиливают. Эти же нейропептиды были найдены во многих других нервных клетках ЦНС. Потом оказалось, что нейропептиды синтезируются еще и в кишечнике, и в желудке. Последнее, что подвергло сомнению принцип ДЕЙЛА,

было обнаружено: парасимпатическая нервная систем иннервирует слюнные железы, здесь находится ацетилхолин, который усиливает выработку слюнных желез. Здесь же находится вазоинтеспинальный пептид (ВИП), который сначала был обнаружен в кишечнике у свиньи – его задача расширять сосуды в кишечнике. Потом его обнаружили в окончаниях парасимпатической нервной системы вместе с ацетилхолином. Оказалось, что на самом деле в одной аксонной терминале могут сосуществовать в основном классические медиаторы с нейропептидами. Зачем это сосуществование? Эти нейропептиды являются модуляторами – они видоизменяют эффекты классических медиаторов. Каким образом:

1) Повышают чувствительность пре- и пост- синаптической мембраны к медиатору;

2) Усиливают синтез медиатора в аксонной терминале

3) Ускоряют выброс медиатора из аксонной терминали

4) Удлиняют действие медиатора, замедляют его разрушение

5) Оказывают внесинаптическое действие, выходят за пределы синаптического контакта, например, расширяют кровеносные сосуды как ВИП

 

Эти модуляторы, обладают признаками медиаторов, но не в полной степени, или рецептора нет, или плохо выделяются из аксонной терминали, или мы чего- то не знаем.

И вот эти вещества, которые сосуществуют с классическими медиаторами, их в настоящее время порядка 50-ти, называются кандидаты в медиаторы.

 

Что с чем сосуществует:

Ацетилхолин + ВИП

Ацетилхолин + ВИП + люлиберин (лю-гормон, ускоряет процессы в половых железах)

Норадреналин + соматостатин (нейропептид, который тормозит выработку соматотропного гормона роста)

Серотонин + тиролиберин (Тирелоидная железа, там тироксин вырабатывается) + энкефалин

 

Гаммааминомаслянная кислота ГАМК + дофамин + серотонин + энкефалин

Дофамин и серотонин – классические медиаторы.

 

Рисуем последнюю схему:

Аксонная терминаль, классический медиатор, нейропептид, постсинаптическая мембрана, где рецептор к нейропептиду, и рецептор к классическому медиатору. Кроме того, есть рецептор и в пресинаптической мембране, потому, что некоторые медиаторы выходят в синаптическую щель, а потом захватываются обратно, чтобы их сохранить. Нейропептид усиливает скорость прохождения медиатора через пресинаптическую мембрану, усиливает синтез классического медиатора, и повышает чувствительность рецептора в постсинаптической мембране к классическому медиатору.

 

P.S.Аксон может расти к органу и если он ошибается т. е. пришел не к своему органу, то синаптического контакта не происходит.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: