Методика работы над конкретной задачей





Работа над составной задачей

Общий способ работы над текстовыми арифметическими задачами

Этапы Цель Приёмы выполнения
1. Подготовительный   Подготовить учащихся к восприятию текста задачи а) Решение простых задач, содержащие величины и отношения между ними, которые входят в данную составную задачу б) Задачи с недостающими данными, при дополнении которых получается текст составной задачи в) Упражнения, связанные с повторением математических понятий и отношениями между ними
2. Чтение и осмысление текста задачи Установить смысл каждого слова, словосочетания, предложения и на этой основе выделить множества, отношения, зависимости, известные и неизвестные величины а) Чтение текста задачи (вслух, про себя) б) Составление краткой записи в) Повторение задачи по краткой записи
3. Поиск плана решения задачи Составить план решения задачи   Поиск плана решения задачи вести от: а) главного вопроса к данным (аналитический способ) б) от данных к главному вопросу (синтетический способ) в) аналитико-синтетический способ г) неполный анализ (ставятся 1-2 вопроса, позволяющие самостоятельно решить задачу) Обучение учащихся анализу задачи можно проводить с помощью граф-схем
       
   
 
 

 

 

4. Запись решения и ответа задачи   Найти ответ на вопрос задачи   а) Устное выполнение каждого пункта плана; б) Письменное выполнение каждого пункта плана: - арифметическое решение: по действиям с пояснениям; по действиям без пояснений; по действиям с вопросами - алгебраическое решение в виде уравнения или неравенства - геометрическое решение в виде чертежа или рисунка
5. Проверка решения задачи Установить, соответствует ли процесс и результат решения образцу правильного решения   - Решение задачи другим способом, если в результате решения другим способом получили тот же результат, следовательно, задача решена верно - Сравнение с правильным решением - Сравнение с образцом хода или результата решения - Повторение решения тем же методом и способом - Прогнозирование (прикидка) и последующее сравнение хода решения с прогнозом. При несоответствии прогнозу – решение неверно - Составление и решение обратных задач (если в результате решения обратной задачи получено данное прямой задачи, то результат решения верен)
6. Работа над задачей после её решения Формирование умения решать составные задачи – Изменение условия текстовой задачи – Изменение вопроса текстовой задачи – Сравнение условий, вопросов, решений текстовых арифметических задач и др. – Выбор графического чертежа, схемы к тексту задачи из нескольких предложенных

 

Методика работы над конкретной задачей

Поезд, следуя из одного города в другой, прошел 180 км пути со скоростью 60 км/ч. На остальной путь ему потребовалось при той же скорости на 4 ч больше. Сколько километров осталось пройти поезду?

Подготовительная ступень

Полезно повторить зависимость между величинами: скоростью, временем и расстоянием. Задания:

– Два велосипедиста движутся с одинаковой скоростью. Первый – 2 часа, второй – 3 часа. Кто из них проедет большее расстояние?

– За какое время пешеход, движущийся со скоростью 4 км/ч, пройдет расстояние 12 км?

– Какое расстояние за 2 часа проедет лыжник, движущийся со скоростью 7 км/ч?

Ступень ознакомления с текстовой составной задачей

Чтение и осмысление текста задачи

Вопросы учителя Ответы учеников
О чем эта задача? О движении поезда.
На какие участки можно разделить путь, пройденный поездом? На путь длиной 180 км и на остальной участок пути.
Что в задаче спрашивается? / Каково требование задачи? Сколько километров осталось пройти поезду?
Что в задаче известно? Известна длина первого участка пути – 180 км и скорость поезда – 60 км/ч; известно, что на остальной путь поезд затратил на 4 ч больше.
Что неизвестно? Неизвестно время на первом участке пути, скорость, время и расстояние на втором участке пути.
Что обозначает словосочетание «при той же скорости»? Это означает, что скорость не изменялась.
Обозначим на схеме основные величины и их значения
Как связаны между собой величины «скорость», «время», «расстояние»? Чтобы найти скорость, надо … Чтобы найти расстояние, надо… Чтобы найти время, надо…
Занесем данные, неизвестное и искомое в таблицу
Участки пути Скорость (км/ч) Время (ч) Расстояние (км)
I ?
II ?, на 4 ч б. ?

 

Поиск плана решения задачи (разбор задачи)

Можно провести аналитический и синтетический способ разбора задачи. Приведем оба варианта.

Аналитический способ (от главного вопроса к данным) Синтетический способ (от данных к главному вопросу)
Схема:     Схема:
– О чем спрашивается в задаче? (Сколько км осталось пройти поезду?) – Что нужно знать, чтобы ответить на этот вопрос? (Нужно знать скорость поезда на втором участке пути и время движения.) – Известны эти величины в задаче? (Нет, мы не знаем время движения.) – Что нужно знать, чтобы узнать время движения на втором участке пути? (Время движения на первом участке пути и разницу во времени.) – Знаем ли мы время движения на первом участке пути? (Нет.) – Что нужно знать, чтобы ответить на этот вопрос? (Нужно знать скорость поезда на этом участке пути и время движения.) – Известно ли нам это? (Да, все эти величины даны в условии, поэтому можно составить план решения задачи.) – Что мы можем узнать, зная расстояние, пройденное поездом на первом участке пути и его скорость? (Можем узнать время движения на первом участке пути.) – Что мы можем узнать, зная время движения на первом участке пути и то, что на втором участке пути время движения было на 4 ч больше? (Время движения на втором участке пути.) – Что мы можем узнать, зная скорость поезда и время движения на втором участке пути? (Расстояние, которое осталось пройти поезду.) – Каков(о) вопрос (требование) задачи? (Сколько км осталось пройти поезду?) – Составим план решения задачи.  

 

Составление плана решения:

1. Сначала узнаем время движения поезда на I участке пути.

2. Потом узнаем время движения поезда на II участке пути.

3. Найдем расстояние на II участке пути и этим ответим на вопрос задачи.

 

Запись решения и ответа задачи

1. 180 : 60 = 3 (ч) – время движения поезда на I участке пути.

2. 3 + 4 = 7 (ч) – время движения поезда на II участке пути.

3. 60 ∙ 7 = 420 (км) – осталось пройти поезду.

 

Проверка решения задачи

Решение тем же самым способом повторно.

Сравнение решения по образцу.

Составление обратной задачи.

Выбор ответа из предложенных учителем вариантов (2040 км, 240 км, 420 км, 420 км/ч).

Установление соответствия между числом, полученным в ответе, и одним из данных в условии:

420 : 60 = 7 (ч) – время движения поезда на II участке пути.

7 – 4 = 3 (ч) – время движения поезда на I участке пути.

180 : 3 = 60 (км/ч) – скорость на первом участке пути.

 

Творческая работа над задачей после её решения (работа над задачей после её решения)

– После проверки решения задачи можно изменить одно из данных, например, разницу между временем на различных участках пути. Школьникам предлагается установить, как изменится путь поезда, если на остальной путь поезду потребовалось на 2 ч больше, на 8 ч больше?

– Можно усложнить условие, например, предположить, что на втором участке пути изменится скорость поезда.

– Можно задать новый вопрос к задаче: «Сколько км всего прошел поезд?»

 





Читайте также:
Своеобразие романтизма К. Н. Батюшкова: Его творчество очень противоречиво и сложно. До сих пор...
Историческое сочинение по периоду истории с 1019-1054 г.: Все эти процессы связаны с деятельностью таких личностей, как...
Методы исследования в анатомии и физиологии: Гиппократ около 460- около 370гг. до н.э. ученый изучал...
Романтизм: представители, отличительные черты, литературные формы: Романтизм – направление сложившеесяв конце XVIII...

Рекомендуемые страницы:


Поиск по сайту

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-13 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Обратная связь
0.039 с.