Формула 2 — Вторая формулировка первого закона Кирхгофа




 

4. Получение синусоидальной электродвижущей силы. Начальная фаза, сдвиг по фазе.

Синусоидальную ЭДС получают с помощью явления электромагнитной индукции. Рамку помещают в магнитное поле и равномерно вращают вокруг своей оси. Рамка пересекает магнитные линии и на ее концах наводится ЭДС электромагнитной индукции, которая изменяется по закону

ω- угол на который рамка поворачивается за 1с, называется угловой скоростью или угловой частотой.

[ω]=с-1(рад/с)

, где f- циклическая частота, Гц

За время рамка поворачивается на угол , тогда получим

Приведенным на рис. 1, 2 графикам двух синусоидальных ЭДС е1 и е2 соответствуют уравнения:

.


Значения аргументов синусоидальных функций и называются фазами синусоид, а значение фазы в начальный момент времени (t=0): и - начальной фазой ( ).

Величину , характеризующую скорость изменения фазового угла, называют угловой частотой. Так как фазовый угол синусоиды за время одного периода Т изменяется на рад., то угловая частота есть , где f– частота.

При совместном рассмотрении двух синусоидальных величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз.

Для синусоидальных ЭДС е1 и е2 угол сдвига фаз:

5. Амплитудное, действующее, среднее значения синусоидальных величин.

Первая из трех величин, характеризующих переменный ток, - его амплитудное значение Iампл. Оно равно максимальному мгновенному значению тока за период его изменения. Как ни странно, с точки зрения воздействия тока разной формы на различные нагрузки, амплитуда тока наименее информативна. Вот почему значение переменного тока определяют сравнением его действия с действием постоянного тока.

Среднее значение переменного тока - это значение такого постоянного тока, который переносит такой же заряд электричества за тот же промежуток времени, что и переменный ток. Для переменного тока, форма которого симметрична относительно оси времени (например, синусоидальный сигнал) среднее значение тока равно нулю. Поэтому обычно под средним значением понимают средневыпрямленное, т. е. среднее значение тока после его выпрямления. Среднее значение тока характеризует его действие, например, при зарядке аккумулятора.

Эффективное значение переменного тока - это значение постоянного тока, который, проходя через активную линейную нагрузку (скажем, резистор), выделяет за тот же промежуток времени такое же количество тепла, какое выделит в этой нагрузке переменный ток. Именно эффективное значение тока важно применительно к нагревательным приборам.

 

6. Изображение синусоидальной функций вращающимися векторами. Понятие о векторных диаграммах.

7. Активная нагрузка в цепи переменного тока. Временная и векторная диаграммы. Мгновенное значение мощности.

АКТИВНАЯ НАГРУЗКА (резистор).

Пусть на участке цепи с активным сопротивлением R и пренебрежимо малыми емкостью и индуктивностью (рис.129) течет квазистационарный переменный ток . В этом случае можем применить закон Ома для мгновенных значений тока и напряжения: .

Следовательно, напряжение на резисторе также совершает гармонические колебания с теми же фазой и частотой, что и сила тока, а амплитудные значения силы тока и напряжения связаны законом Ома: . Графики зависимости силы тока и напряжения от времени представлены на рис.130.

РИС.129 РИС.130 РИС.131 РИС.132

Для более наглядного представления используем метод векторных диаграмм. Согласно этому методу, каждой гармонически изменяющейся со временем величине: можно сопоставить вектор длиной А, который равномерно вращается в плоскости XOY с угловой скоростью и начальной фазой . Мгновенное значение гармонической величины, в этом случае, представляет собой проекцию вектора А на ось OY (рис.131).

Для резистора в рассмотренном случае соответствующие вектора для представления силы тока и напряжения на векторной диаграмме совпадают (рис.132).

 

8. Индуктивная нагрузка в цепи переменного тока. Временная и векторная диаграммы. Мгновенное значение мощности.

ИНДУКТИВНАЯ НАГРУЗКА.

Рассмотрим участок цепи с катушкой индуктивности L и пренебрежимо малыми активным сопротивлением и емкостью (рис.136). Пусть по участку протекает ток .

Так как ЭДС самоиндукции, согласно правилу Ленца, препятствует изменению протекающего тока, то .

Следовательно, напряжение на индуктивности совершает гармонические колебания с той же частотой, что и сила тока, но опережает по фазе силу тока на (по времени – на четверть периода). Амплитудные значения силы тока и напряжения также связаны соотношением, аналогичным закону Ома: , где - называется индуктивным сопротивлением.

Графики зависимости силы тока и напряжения, а также векторная диаграмма, представлены на рис.137 и рис.138.

РИС.136 РИС.137 РИС.138

 

9. Ёмкостная нагрузка в цепи переменного тока. Временная и векторная диаграммы. Мгновенное значение мощности.

ЕМКОСТНАЯ НАГРУЗКА

Рассмотрим участок цепи с конденсатором емкостью С, активное сопротивление которого и индуктивность пренебрежимо малы (рис.133). Пусть на участке течет ток .

Чтобы рассчитать напряжение на конденсаторе, найдем функциональную зависимость заряда на пластинах конденсатора от времени: ,

Постоянную интегрирования примем равной нулю, так как нас интересует лишь заряд конденсатора, обусловленный переменным током.

Тогда напряжение на конденсаторе изменяется по закону:

, т. е. напряжение совершает колебания с той же частотой, что и сила тока, но отстает по фазе от силы тока на (по времени – на четверть периода).

Амплитудные значения силы тока и напряжения связаны постоянным, при данных условиях, коэффициентом , который, при сравнении с законом Ома для резистора, играет роль сопротивления и поэтому называется емкостным сопротивлением.

Следовательно, при чисто емкостной нагрузке закон Ома для мгновенных значений тока и напряжения НЕ ВЫПОЛНЯЕТСЯ, но амплитудные значения тока и напряжения подчиняются закону Ома: .

РИС.133 РИС.134 РИС.135

Полученные соотношения отчетливо проявляются на графиках зависимости силы тока и напряжения от времени (рис.134), а также на векторной диаграмме (рис.135).

 

10. Неразветвленная цепи переменного тока с последовательным соединением r, L, C. Векторная диаграмма для случая Треугольники сопротивлений и мощностей.

11. Резонанс напряжений. Условие резонанса. Векторная диаграмма. Опасность резонанса.

12. Разветвленная цепь переменного тока с параллельным соединением r, L, C. Векторная диаграмма для случая . Треугольники проводимости и мощностей.

13. Резонанс токов. Условие резонанса. Векторная диаграмма. Опасность резонанса.

14. Понятие о символическом методе расчета цепей синусоидльного тока. Закон Ома и Кирхгофа в символической форме. Выражение для мощности.

15. Система трехфазного тока и ее преимущества. Получение трехфазного тока. Временная и векторная диаграмма электродвижущей силы.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: