ТЕКСТИЛЬНЫЕ ВОЛОКНА
1.1.Натуральные (природные) волокна.
1.2.Химическиие волокна.
1.2.1.Искусственные волокна.
1.2.2.Синтетические волокна.
Текстильными волокнами называются тонкие, гибкие и прочные тела, длина которых значительно превосходит их поперечник.
Классификация текстильных волокон. Все текстильные волокна делятся на два класса: натуральные и химические.
Натуральные волокна в зависимости от химического состава подразделяются на два подкласса: органические (растительного и животного происхождения) и Минеральные.
Волокна растительного происхождения: хлопок, лен, пенька, джут, кенаф, кендырь, рами, канатник, сизаль и др.
Волокна животного происхождения: шерсть овец, коз, верблюдов и других животных, натуральный шелк тутового и дубового шелкопряда.
К минеральным волокнам относится асбест,
Химические волокна делятся на два подкласса: искусственные и синтетические.
Искусственные волокна делятся на органические (вискозное волокно, ацетатное, триацетатное, медно-аммиачное, мти- лон В, сиблоновое, полинозное и др.) и неорганические (стеклянные и металлические волокна и нити).
Синтетические волокна в зависимости от природы исходных материалов делятся на полиамидные (капрон, анид, энант), полиэфирные (лавсан), полиакрилнитрильные (нитрон), полиолефиновые (полипропилен, полиэтилен), полиуретановые (спан- декс), поливинилспиртовые (винол), поливинилхлоридные (хлорин), фторсодержащие (фторлон), а также полиформальдегид- ные, полибутилентерефталатные и др.
Натуральные (природные) волокна
Хлопок — это волокно, покрывающее семена однолетнего теплолюбивого кустарникового растения хлопчатника высотой 1—1,5 м. Вегетационный период — 170 дней. Волокно собирают по мере созревания вместе с семенами. Зрелое волокно хлопка представляет собой сплющенную, штопорообразную закрученную трубочку с узким каналом внутри. Длина хлопковых волокон колеблется в пределах от 1 до 55 мм. Волокна до 20 мм называются непрядомыми; 20—27 мм — коротковолокнистый, 28—34 мм — средневолокнистый, 35—55 мм — длинноволокнистый хлопок. Основным веществом хлопкового волокна является целлюлоза (94,5—97'%).
|
Льняные волокна получают из лубяного слоя стебля травянистого однолетнего растения льна, имеющего две основные ботанические разновидности: лен-кудряш и лен-долгунец. Вегетационный период произрастания — 70—90 дней. Различают элементарное и техническое льняное волокно. Длина элементарного волокна льна составляет 4—70 мм. Элементарные волокна, скрепленные пектиновыми веществами, образуют техническое льняное волокно длиной от 60 доЮО см. По химическому составу, как и хлопок, льняное волокно представляет собой целлюлозу (75—80 %). Большой процент примесей затрудняет отделку льняных тканей.
К прочим лубяным волокнам относятся пенька, джут, кенаф, кендырь, канатник и другие, которые имеют весьма ограниченное применение в производстве текстильных изделий бытового назначения.
Шерсть — волосяной покров, состригаемый с овец, коз, верблюдов и других животных. Основную долю волокна (95— 97 %) составляет овечья шерсть, 2—3 % — козья, 1—2 % — верблюжья. Отдельное шерстяное волокно представляет собой цилиндр с волнообразной извитостью. В отличие от хлопковых и элементарных лубяных волокон, каждое из которых представляет собой одну растительную клетку, шерстяное волокно построено из многих клеток, отличающихся друг от друга формой, размерами и свойствами. Комплексы трех разновидностей клеток образуют три слоя шерстяного волокна — чешуйчатый, корковый и сердцевинный. Чешуйчатый слой образует внешнюю оболочку шерстяного волокна. Корковый слой расположен под чешуйчатым и является основным в шерстяных волокнах, так как им определяются такие важные свойства волокон, как прочность, размер и характер удлинения, упругость, мягкость и др. Сердцевинный слой расположен в центральной части волокна и состоит из клеток различной формы и воздушных промежутков.
|
В зависимости от особенностей структуры различают следую- щие типы шерстяных волокон: пух, ость, переходный волос, мертвый волос. Ость имеет все три слоя. Пух — самое тонкое, мягкое, нежное волокно с большой извитостью, приятным матовым блеском — состоит из двух слоев: чешуйчатого и коркового.
В зависимости от того, из каких волокон по длине, тонине, извитости состоит шерсть ее подразделяют на однородную и неоднородную, состоящую из смеси волокон различных типов.
В зависимости от тонины волокон различают шерсть тонкую, полутонкую, полугрубую и грубую.
По химическому составу шерсть представляет собой белковое вещество — кератин (90 %).
Натуральный шелк — очень ценное текстильное волокно, которое представляет собой продукт выделения шелкоотделительных желез гусениц тутового (90 %) и дубового (10 %) шелкопрядов. В зрелом возрасте гусеница завивает кокон, который состоит из непрерывной нити длиной 600—1500 м. Коконная нить состоит из двух параллельно расположенных фиброино- вых шелковин, склеенных серицином (20—30 %).
|
На кокономотальных фабриках для облегчения размотки коконы подвергают запарке в горячей воде (95 °С), в результате чего размягчается серицин. Коконная нить очень тонкая и недостаточно прочная, поэтому при размотке нити нескольких коконов (от 3 до 20) соединяют в одну, называемую нитью шелка-сырца.
Различные отходы шелкомотания, не пригодные для получения длинной нити, используются для получения (путем прядения) шелковой пряжи, или пряденного шелка.
Свойства природных волокон определяют их назначение и свойства готовых изделий. Основными свойствами волокон являются: длина, тонина, прочность, удлинение, гигроскопичность, стойкость к различным воздействиям и др. (см. табл. 1.1).
Длина хлопковых волокон составляет 20—55 мм, технических льняных — 400—1000 мм, шерстяных —- 30—300 мм и более. Чем длиннее волокна, тем более прочной, тонкой и гладкой может быть получаемая из них пряжа.
Тонина волокон определяется в тексах и колеблется в пределах 10—0,17 текс. Наиболее тонкими волокнами являются хлопковые, нити тутового шелкопряда, пух шерсти.
Прочность на разрыв различных природных волокон неодинакова. Если принять прочность шерстяного волокна на условную площадь сечения в 1 мм2 за единицу, то прочность хлопка превысит ее в 2,5 раза, шелка — в 3,5 раза, льна — в 4 раза.
Наибольшим удлинением обладают волокна шерсти и шелка (20—35 и 20—22 % соответственно), наименьшим — льна и хлопка (1,2—2,5 и 5—10 % соответственно). Шерсть и шелк отличаются большей упругостью, эластичностью. Поэтому изделия из этих волокон меньше других сминаются, лучше сохраняют приданную им форму, более износостойки.
Гигроскопичность, одно из важнейших гигиенических свойств волокон, колеблется от 8 % (хлопок) до 15—17 % (шерсть), максимальная может быть в пределах 45 % (шерсть).
Светостойкость наиболее, высокая у льна, ниже у шерсти, хлопка, натурального шелка.
Хлопок и лен устойчивы к щелочам и не устойчивы к неорганическим кислотам (серной, соляной, азотной). Обработка хлопка холодной едкой щелочью изменяет его строение и свойства: он набухает, теряет извитость, приобретает блеск, повышается прочность, гигроскопичность, усиливается способность волокон окрашиваться. Шерсть и шелк не устойчивы к щелочам даже небольших концентраций, особенно при нагревании. Разбавленные кислоты на холоде не действуют на эти волокна. Концентрированные кислоты разрушают их.
Химические волокна
Химические волокна в зависимости от исходных материалов делят на искусственные и синтетические.
К искусственным относятся волокна, нити, получаемые химической переработкой природных высокомолекулярных соединений (древесная целлюлоза, хлопковый пух), а также волокна, получаемые на основе низкомолекулярных веществ: стеклянные, металлические, металлизированные.
Синтетические волокна (нити) получают из гетероцепных и карбоцепных синтетических полимеров в результате реакции полимеризации или поликонденсации. Исходным сырьем для производства синтетических волокон являются простые вещества (этилен, бензол, фенол, пропилен и др.), которые получают из нефтяных газов, нефти и каменноугольной смолы.
Процесс производства химических волокон состоит из следующих стадий: получение исходного полимера, преобразование полимера в прядильный раствор, формирование нитей через фильеры, отделка нитей. Фильтры изготовляют из платины, золота, палладия и их сплавов.
Волокна формируют из расплавов, растворов (по сухому и мокрому способам), а также волочением, плющением, резкой металлической фольги.
Химические волокна выпускаются в виде: моноволокон, т.е. элементарных нитей, состоящих из одного волокна неопределенной длины; комплексных нитей, состоящих из бесконечно длинных скрученных между собой волокон; волокон, нарезанных на короткие отрезки (по 150 мм) – штапельные волокна; жгутовое штапельное волокно.
Химические волокна имеют ряд преимуществ перед натуральными: их производство является менее трудоемким; оно не зависит от природных условий; не имеет сезонного характера; химическое волокно можно получить с заранее заданными свойствами.
Искусственныые волокна
К искусственным относят волокна, вырабатываемые из целлюлозы и ее производных.
Вискозное волокно – одно из наиболее распространенных искусственных волокон. Для выработки вискозного волокна используют древесную целлюлозу и короткое хлопковое волокно. Краткая схема получении вискозного волокна состоит в следующем: чистую целлюлозу обрабатывают 18%-ным раствором едкого натра при температуре 18-20о С в течение 1 ч. – мерсеризуют. Образующаяся целлюлоза выдерживается в течение 12-14 часов при установленной температуре (процесс пред созревания). Созревшая целлюлоза обрабатывается сероуглеродом – образуется ксантогенат, который растворяют в разбавленном растворе едкого натра и получают вязкий продукт – вискозу, который фильтруют и выдерживают в течение 20-40 часов. Затем он поступает на прядильные машины и продавливается с помощью насосиков через фильеры (цилиндр из золота, платины, нержавеющей стали), на дне которых имеются отверстия различного диаметра. Струйки вискозы через фильеры попадают в ванну с водяным раствором 4-5%-ной серной кислоты и сернокислых солей, где происходит осаждение (коагуляция) твердой части, а также омыление простого эфира до чистой целлюлозы. После продавливания через фильеры волокно подвергается вытяжке и тепловой обработке в горячей воде.
После формования вискозная нить отмывается от кислот и солей и подвергается отделке: удалению серы, отбелке, замасливанию, сушке, перемотке.
По химическому составу вискозное волокно представляет собой чистую целлюлозу (С6Н10О5)n. Степень полимеризации целлюлозы вискозного волокна равна 300—600.
Полипозное волокно — разновидность вискозного, для выработки которого используют ксантогенат с высокой степенью этерификации. Принцип получения этого волокна основан на образовании при формовании более однородной гидратцеллю- лозы вследствие разложения ксантогената целлюлозы одновременно по всей толщине волокна. Такое волокно имеет более однородную и плотную структуру, а в результате — меньшую потерю прочности в мокром состоянии.
Сиблоновое волокно — модифицированное вискозное волокно. Для выработки его используют однородную по свойствам древесную целлюлозу со степенью полимеризации 500—600. Волокно сиблон формуется из вискозы, в состав которой входят модификаторы (полиэтиленгликоль и др.), что позволяет получить более однородный прядильный раствор.
Мтилон В — химически модифицированное вискозное волокно, представляет собой привитый сополимер целлюлозы (60—65 %) и акрилнитрила (35—40 %).
Кроме рассмотренных выше вискозных волокон, в настоящее время выпускаются бактерицидные волокна, полые вискозные волокна, масло и грязестойкие, которые получают в результате прививки к целлюлозе фторсодержащих полимеров.
Медно-аммиачное волокно получают растворением целлюлозы в медно-аммиачном растворе. Образующийся вязкий раствор фильтруют и формируют, продавливая через фильеры в осадительную ванну с водой, а затем во второй ванне разлагают 2—3%-ным раствором серной кислоты. Полученное гид- ратцеллюлозное волокно вытягивают, промывают, замасливают и сушат.
Ацетатное волокно. Особенность ацетатного волокна заключается в том, что его получают из сложного уксусного эфира целлюлозы — ацетата целлюлозы. Ацетатное волокно вырабатывается двух видов: диацетатное (ацетатное) и триацетатное. Хлопковую или облагороженную древесную целлюлозу, содержащую не менее 0,7 % а-целлюлозы, обрабатывают смесью уксусной кислоты, уксусного ангидрида с использованием в качестве катализатора серной кислоты. В результате образуется триацетат целлюлозы, который растворяется в метиленхлориде со спиртом. Его используют для получения триацетатного волокна. При частичном омылении триацетата целлюлозы получают диацетат целлюлозы, который растворяется в ацетоне со спиртом, для получения ацетатного волокна.
Формование ацетатных волокон осуществляется из растворов сухим и мокрым способами. Выходящие из фильеры струйки раствора попадают в шахты, куда подается сухой подогретый воздух. Летучие растворители быстро испаряются и волокно затвердевает.
Свойства искусственных волокон в определенной степени имеют различия.
Вискозное, медно-аммиачное, полинозное, сиблоновое волокна характеризуются сравнительно высокой устойчивостью к истиранию. Ацетатное, триацетатное волокна, мтилон-В имеют сравнительно низкую устойчивость к истиранию, примерно в 5—8 раз1 ниже вискозного.
Большим недостатком искусственных волокон является потеря прочности в мокром состоянии (вискозное — до 60 %).
Искусственные волокна сильно сминаются, имеют небольшую упругость за исключением ацетатного, триацетатного, сиблона, упругость которых примерно в 2 раза выше вискозного.
Вискозное, медно-аммиачное, сиблоновое, полинозное волокна горят так же, как и все целлюлозные материалы — при горении издавая запах жженой бумаги. Ацетатное и триацетатное волокна спекаются, продукты горения имеют характерный запах уксусной кислоты.
Гидратцеллюлозные волокна малоустойчивы к действию микроорганизмов. Ацетатное и триацетатное волокна обладают высокой устойчивостью к микроорганизмам и плесени. При длительном действии солнечного света и атмосферных воздействий снижается прочность искусственных волокон.
Синтетические волокна
К синтетическим относятся волокна из полимерных материалов, полученных синтезом простых веществ (этилена, бензола, фенола, пропилена) в результате реакции полимеризации или поликонденсации.
Полиамидные волокна (капрон, анид, энант) получены из капролактама, гексометилендиамина, адипиновой кислоты и полиэнантоамида. Технологический процесс производства полиамидных волокон различных видов существенных различий не имеет. Он включает три основных этапа: синтез полимера; формование волокна; вытягивание и последующая обработка волокна. В процессе формования свежесформованное синтетическое волокно сильно вытягивается (в 2-20 раз) с целью повышения его механических свойств. После предварительной вытяжки волокна подвергают холодному вытягиванию.
Полиэфирное волокно (лавсан) среди синтетических волокон занимает лидирующее положение. Исходным сырьем для производства волокна лавсан служит этиленгликоль и терефталевая кислота. Реакцией поликонденсации получают смолу лавсан, а затем из расплава полимера, аналогично способу производства полиамидных волокон, получают волокно лавсан. Скорость формирования составляет 400— 1500 м/мин, фильерная вытяжка — 8—10 раз.
Свежесформированное полиэфирное волокно имеет аморфное строение, повышенную хрупкость, низкую прочность, большое необратимое удлинение, большую усадку. Поэтому лавсановое волокно подвергается вытяжке при температуре 100—150 °С на 350—500 %.
Вытянутая и скрученная нить подвергается термофиксации. Более 50 % полиэфирных волокон составляют штапельные волокна.
Полиакрилонитрильные волокна (нитрон) получают полимеризацией акрилонитрила, но чаще всего с сополимерами акрилонитрила (винилпиридина, винилацетата, стирола и др.), способствующими повышению гибкости, эластичности, лучшей накрашиваемости. Полиакрилонитрильное волокно формируют из раствора сухим и мокрым способами (растворяют в диметилформамиде).
Для нитронового волокна наиболее важны отделочные операции, в процессе которых оно приобретает необходимые свойства — вытяжку и термофиксацию. Вытяжка свежесформированного волокна нитрон производится в 8—12 раз. После вытяжки волокно подвергается термообработке, гофрированию, чтобы придать ему извитость. Нитрон выпускается в основном в виде короткого волокна.
Поливинилхлоридные волокна (ПВХ, хлорин), получают из полимеров и сополимеров винилхлорида. Исходным сырьем для получения хлористого винила служит дешевое и доступное сырье — ацетилен, этилен и хлористый водород. Хлористый винил подвергают полимеризации. В результате получают полихлорвиниловую смолу. Полимер растворяют в смеси ацетона и сероуглерода. Из вязкого раствора формируют волокна сухим и мокрым способами. Для повышения физико-механических свойств волокон они подвергаются вытяжке (в 2—8 раз) и термической обработке.
Поливиниле пир товые волокна (винол) изготовляют из поливинилового спирта, который получают из продуктов переработки ацетилена и уксусной кислоты. Образовавшийся винилацетат подвергают полимеризации, полученный поливинилацетат омыляют, при этом образуется поливиниловый спирт. Формуют виноловое волокно продавливанием через фильеры 15—18%-ного водного раствора поливинилового спирта, Для коагуляции волокна используют осадительную ванну, состоящую из раствора сернокислого натрия и сернокислого цинка. Но такое волокно водорастворимо. Для того чтобы получить винол нерастворимым в воде, его обрабатывают формальдегидом.
Полиуретановые волокна (спандекс) получают в результате взаимодействия диизоцианатов с гликолями. Формирование волокон можно производить сухим и мокрым способами. При введении в полимер гибких блоков получают высокоэластичные нити со свойствами, присущими только каучукоподобным материалам, с растяжимостью до 800 %.
Полиолефиновые волокна (полипропиленовое и полиэтиленовое) получают полимеризацией сравнительно дешевого сырья — пропилена и этилена, продуктов крекинга нефти — и формированием из расплава. Струйки расплава, попадая из фильеры в шахту, охлаждаются и превращаются в элементарные нити, которые подвергаются 6—7-кратной вытяжке для улучшения физико-механических свойств волокон.
Фторсодержащие волокна (фторлон, полифен) получают методом полимеризации тетрафторэтилена. Водная дисперсия полимера, в которую входит загуститель (поливиниловый спирт), продавливают через фильеры в шахту, в которую поступает горячий воздух. Волокно подвергается нагреву и дополнительной вытяжке на 300—500 % при температуре 360—400 °С, очень устойчиво к действию химических реагентов (не растворяется в царской водке).
В последнее время появились полиформальдегидные, поли- бутилентерефталатные, биокомпонентные, электропроводные, модакриловые, полибензимидальные, поливинилсульфидные, полиэфиркетонные волокна и др.
Свойства синтетических волокон (см. табл. 1.1) различны для разных волокон. Синтетические волокна имеют достаточно высокую прочность и по этому показателю превосходят природные и искусственные волокна. Разрывная длина колеблется от 18 до 70 км, предел прочности — от 20 до 75 сН/текс. Синтетические волокна легче природных и искусственных, удельный вес их колеблется от 0,92 до 1,6. Недостатком этих волокон является низкая гигроскопичность, исключение составляет винол.
Полиамидные волокна характеризуются очень высокой устойчивостью к истиранию и действию многократных деформаций. По этому показателю они превосходят все текстильные волокна (например, вискозное — в 100 раз, хлопковое — в 10 раз). Достаточно устойчивы к истиранию лавсан, винол, полипропилен, спандекс, не устойчивы нитрон, хлорин и др.
Самой высокой светопогодоустойчивостью отличается нитрон. После воздействия света и атмосферы в течение года природные и химические волокна почти полностью теряют прочность, прочность же нитронового волокна снижается на 20 %, Низкая светостойкость характерна хлорину, капрону, полипропилену и др.
Лавсан по термостойкости превосходит все синтетические волокна. Устойчивы к действию нагревания нитрон, фторлон. Самые легкие волокна — полиолефиновые, удельный вес которых ниже удельного веса воды (0,92—0,94).
Недостатком синтетических волокон является их сильная электризуемость, плохой гриф, способность к пиллингообразо- ванию. Полиолефиновые волокна при пониженных температурах (10—15 °С) становятся хрупкими.