Физическая сущность процесса




Плазменная обработка металлов

Плазменная обработка получила широкое распространение вследствие высокой по промышленным стандартам температуры плазмы (~ 104 К), большого диапазона регулирования мощности и возможности сосредоточения потока плазмы на обрабатываемом изделии; при этом эффекты плазменной обработки достигаются как тепловым, так и механическим действием плазмы (бомбардировкой изделия частицами плазмы, движущимися с очень высокой скоростью - так называемый скоростной напор плазменного потока). Удельная мощность, передаваемая поверхности материала плазменной дугой, достигает 105-106 Вт/см2, в случае плазменной струи она составляет 103-104 Вт/см2. В то же время тепловой поток, если это необходимо, может быть рассредоточен, обеспечивая «мягкий» равномерный нагрев поверхности, что используется при наплавке и нанесении покрытий.

Физическая сущность процесса

Плазмой называется газ, значительная часть которого ионизована. При сильном нагревании любого вещества оно превращается в газ, при дальнейшем повышении температуры скорости движения частиц газа возрастают настолько, что при взаимных столкновениях их кинетической энергии достаточно для ионизации газа. Кроме термической ионизации можно осуществить фотоионизацию (при взаимодействии с электромагнитным излучением), ионизацию бомбардировкой газа заряженными частицами и др. В плазменном состоянии в веществе, помимо нейтральных молекул и атомов, присутствуют заряженные частицы – электроны и ионы. Это делает плазму хорошим проводником электрического тока, что широко используется для различных практических целей. Для технологических целей плазма используется в основном тогда, когда требуется высокотемпературный концентрированный нагрев значительных объемов заготовки. В настоящее время в промышленности широко используется плазменная сварка, резка металлов; плазменная наплавка и напыление тугоплавких и сверх прочных металлов и сплавов, плазменная химия и т.п [2].

Для технологических целей получение плазмы осуществляют в плазмотронах - специальных устройствах, в которых используется электрический дуговой разряд, тлеющий разряд, высокочастотные и сверхвысокочастотные разряды, протекающие в различных плазмообразующих газах.

Для более точного определения плазмы используется понятие ее квазинейтральности. Квазинейтральность плазмы означает, что число положительных и отрицательных зарядов в ней почти одинаково, а возникающие в плазме электрические поля приводят к восстановлению равенства разноименных зарядов, если в силу каких либо причин это равенство нарушается. При уменьшении объема плазмы может наступить момент, когда число частиц будет настолько мало, что условие квазинейтральности не соблюдается. Объем, начиная с которого нарушается квазинейтральность плазмы, определяется так называемым дебаевским радиусом экранирования :

 

 

где k- постоянная Больцмана, - температура электронов в кельвинах, n - плотность электронов, e - заряд електрона [3].

Таким образом, чтобы плазма сохраняла квазинейтральность, ее линейные размеры должны намного превосходить дебаевский радиус . Для технологических нужд применяется плазма, в которой дебаевский радиус экранирования может достигать десятков метров.

Степень ионизации плазмы - представляет собой отношении в плазме заряженных и нейтральных частиц. В реальных установках степень ионизации плазмы колеблется от 0 до 100%.

В плазме температура составляющих ее частиц может быть различной. Поэтому вводят понятие электронной , ионной и температуры нейтральных частиц . В плазме разряда электроны, как более легкие частицы, быстрее набирают энергию от электрического поля и их температура выше. При низких давлениях плазмы разница между температурами электронов и ионов может достигать нескольких порядков. В технологических установках обычно применяют достаточно плотную плазму (n> ), для нее можно практически считать, что = = . Температура плазмы в промышленных плазмотронах достигает значений в десятки тысяч градусов. В отличие от плазмы для управляемого термоядерного синтеза, где требуется температура в сотни миллионов градусов, плазму с температурой называют низкотемпературной.

В промышленности наиболее часто встречаются плазмотроны, в которых используется электрический дуговой разряд или безэлектродный высокочастотный индукционный разряд. Если плазмотрон и изделие электрически связаны, то такая схема обработки называется плазменной дугой, а соответствующий плазмотрон называется плазмотроном прямого действия. В этом случае эффективность нагрева изделия, как правило, выше, но изделие должно быть электропроводно.

 

Рис. 1. Схема плазмотрона

Принципиальная схема обработки изделия плазмотроном прямого действия представлена на рис.1. Схема обработки изделия, не находящимся в электрическом контакте с плазмотроном, называется обработкой плазменной струей, соответственно, плазмотрон называется плазмотроном косвенного действия [4].

Стабилизация дуги в плазмотроне может осуществляться аксиальным потоком газа, как представлено на рисунке. Используется также стабилизация дуги с помощью тангенциального напуска плазмообразующего газа или путем ограничения столба газового разряда охлаждаемой стенкой плазмотрона.

Наибольшая температура плазменной струи реализуется на оси плазменной струи, она значительно выше, чем у открытой дуги. Плотность теплового потока у плазмотронов достигает и также больше, чем у открытой дуги. В плазменных источниках используется большая скорость плазмы при ее выходе из плазмотрона, чем достигается значительный газодинамический напор, что используется для различных технологических целей (например, получения неизотермической плазмы). Используются плазмотроны как с большим расходом газа и турбулентным потоком плазмы, так и с ламинарными плазменными струями, отличающимися большой длиной (до 0,4 м) и высокой стабильностью.

Плазматрон используются главным образом в промышленности в технологических целях, но устройства, аналогичные плазматрону, применяют и в качестве плазменных двигателей. Начало широкого использования плазматрона в промышленной и лабораторной практике относится к концу 50-х - началу 60-х гг. 20 в., когда были разработаны эффективные с инженерной точки зрения способы стабилизации высокочастотного разряда и дугового разряда, а также способы изоляции стенок камер, в которых происходят эти разряды, от их теплового действия. Соответственно, наиболее широкое распространение получили дуговые и высокочастотные (ВЧ) плазматроны.

Дуговой плазматрон постоянного тока состоит из следующих основных узлов: одного (катода) или двух (катода и анода) электродов, разрядной камеры и узла подачи плазмообразующего вещества; разрядная камера может быть совмещена с электродами - так называемыми плазматронами с полым катодом. Реже используются дуговые плазматроны, работающие на переменном напряжении; при частоте этого напряжения 105 Гц - их относят к ВЧ плазматронам. Существуют дуговые плазматроны с осевым и коаксиальным расположением электродов, с тороидальными электродами, с двусторонним истечением плазмы, с расходуемыми электродами (рис. 2) и т.д. Отверстие разрядной камеры, через которое истекает плазма, называется соплом плазматрона (в некоторых типах дуговых плазматронов границей сопла является кольцевой или тороидальный анод). Различают две группы дуговых плазматронов - для создания внешней плазменной дуги (обычно называется плазменной дугой) и плазменной струи. В плазматронах 1-й группы дуговой разряд горит между катодом плазматрона и обрабатываемым телом, служащим анодом. Эти плазматроны могут иметь как только катод, так и второй электрод вспомогательный анод, маломощный разряд на который с катода (кратковременный или постоянно горящий) «поджигает» основную дугу. В плазматронах 2-й группы плазма, создаваемая в разряде между катодом и анодом, истекает из разрядной камеры в виде узкой длинной струи.

Рис. 2. Схема дуговых плазматронов: а - осевой; б - коаксиальный; в с тороидальными электродами; г - двустороннего истечения; д - с внешней плазменной дугой; е - с расходуемыми электродами; 1 - источник электропитания; 2 - разряд; 3 - плазменная струя; 4 - электрод; 5 - разрядная камера; 6 - соленоид; 7 - обрабатываемое тело.

 

Стабилизация разряда в дуговых плазматронах осуществляется магнитным полем, потоками газа и стенками разрядной камеры и сопла. Один из распространённых способов магнитной стабилизации плазменноструйных плазматронов с анодом в форме кольца или тора, коаксиального катоду, состоит в создании перпендикулярного плоскости анода сильного магнитного поля, которое вынуждает токовый канал дуги непрерывно вращаться, обегая анод. Поэтому перемещаются по кругу анодные и катодные пятна дуги, что предотвращает расплавление электродов.

К числу способов газовой стабилизации, теплоизоляции и сжатия дуги относится так называемая «закрутка» - газ подаётся в разрядную камеру по спиральным каналам, в результате чего образуется газовый вихрь, обдувающий столб дуги и генерируемую плазменную струю: слой более холодного газа под действием центробежных сил располагается у стенок камеры, предохраняя их от контакта с дугой [1]. В случаях, когда не требуется сильного сжатия потока плазмы, стабилизирующий газовый поток не закручивают, направляя параллельно столбу дуги, и не обжимают соплом (катод располагают на самом срезе сопла). Очень часто стабилизирующий газ одновременно является и плазмообразующим веществом. Применяют также стабилизацию и сжатие дуги потоком воды (с «закруткой» или без неё).

Плазма дуговых плазматронов неизбежно содержит частицы вещества электродов вследствие их эрозии. Когда этот процесс по технологическим соображениям полезен, его интенсифицируют (плазматрон с расходуемыми электродами); в других случаях, напротив, минимизируют, изготовляя электроды из тугоплавких материалов (вольфрам, молибден, спец. сплавы) и охлаждая их водой, что, кроме того, увеличивает срок службы электродов.

Плазматроны с плазменной струёй обычно используют при термической обработке металлов, для нанесения покрытий, получения порошков с частицами сферической формы, в плазмохимической технологии и пр.; плазматроны с внешней дугой служат для обработки электропроводных материалов; плазматроны с расходуемыми электродами применяют при работе на агрессивных плазмообразующих средах и при необходимости генерации металлической, углеродной и т.д. плазмы из материала электродов (например, при карботермическом восстановлении руд).

Мощность дуговых плазматронов 102-107 Вт; температура струи на срезе сопла 3000-25000 К; скорость истечения струи 1-104 м/сек; промышленное кпд 50-90%; ресурс работы (определяется эрозией электродов) достигает несколько сотен ч, в качестве плазмообразующих веществ используют воздух, N2, Ar, H2, NH4, O2, H2O, жидкие и твёрдые углеводороды, металлы, пластмассы.

Высокочастотный плазматрон включает: электромагнитную катушку-индуктор или электроды, подключенные к источнику высокочастотной энергии, разрядную камеру, узел ввода плазмообразующего вещества. Различают индукционные, ёмкостные, факельные плазмотроны, плазматроны на коронном разряде и с короной высокочастотной, а также сверхвысокочастотные плазматроны (рис. 3). Наибольшее распространение в технике получили индукционные ВЧ плазматроны, в которых плазмообразующий газ нагревается вихревыми токами. Т. к. индукционный высокочастотный разряд является безэлектродным, эти плазматроны используют для нагрева активных газов, паров агрессивных веществ, а также инертных газов, если к плазменной струе предъявляются высокие требования по чистоте. С помощью индукционных плазматронов получают тонкодисперсные и особо чистые порошковые материалы на основе нитридов, боридов, карбидов и др. химических соединений. В плазмохимических процессах объём разрядной камеры таких плазматронов может быть совмещен с реакционной зоной. Мощность плазматрона достигает 1 МВт, температура в центре разрядной камеры и на начальном участке плазменной струи ~ 104 К, скорость истечения плазмы 0-103 м/сек, частоты - от нескольких десятков тыс. Гц до десятков МГц, промышленное кпд 50-80%, ресурс работы до 3000 ч. В СВЧ плазматроне рабочие частоты составляют тысячи и десятки тыс. МГц; в качестве питающих их генераторов применяются магнетроны. ВЧ плазматроны всех типов, кроме индукционных, применяются (70-е гг. 20 в.) главным образом в лабораторной практике. В ВЧ плазматроне, как и в дуговых, часто используют газовую «закрутку», изолирующую разряд от стенок камеры. Это позволяет изготовлять камеры ВЧ плазматрона из материалов с низкой термостойкостью (например, из обычного или органического стекла) [11].

Для пуска плазматрона, т. е. возбуждения в нём разряда, применяют: замыкание электродов, поджиг вспомогательного дугового разряда, высоковольтный пробой межэлектродного промежутка, инжекцию в разрядную камеру плазмы и др. способы. Основные тенденции развития плазматронов: разработка специализированных плазматронов и плазменных реакторов для металлургической, химической промышленностей, повышение мощности в одном агрегате до 1- 10 МВт, увеличение ресурса работы и т.д.

Рис. 3. Схемы высокочастотных плазматронов: а - индукционный; б) ёмкостный; в - факельный; г - сверхвысокочастотный; 1 - источник электропитания; 2 - разряд; 3 - плазменная струя; 4 - индуктор; 5 - разрядная камера; 6 - электрод; 7 -— волновод

 

Плазменная горелка, ручной дуговой плазматрон для нанесения покрытий, резки, сварки, наплавки и др. процессов плазменной обработки. По принципу действия различают две группы плазменных горелок: для работы плазменной дугой и для работы плазменной струй [12]. При механизированной обработке плазменная горелка закрепляется на специальной установке; для нанесения покрытий и наплавки она обычно оснащается устройством для подачи распыляемого или наплавляемого материала. Такая плазменная горелка называется плазменной головкой. Мощность плазменной горелки достигает 100 кВт, плазмообразующими газами служат Ar, Не, N2, NH4, воздух и их смеси. Для зажигания дугового разряда в начале работы необходимо замкнуть зазор между катодом и анодом плазменной горелки (плазменная струя) или между катодом и обрабатываемым металлом (плазменная дуга) или иным образом возбудить разряд.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: