II. Классификация витаминов по группам.




СОДЕРЖАНИЕ.

Введение.

I. Питание: белки, жиры, углеводы.

II. Классификация витаминов по группам.

III. Микро-макроэлементы, совместимость продуктов, роль воды.

 

 

Введение.

 

Сегодня я вам расскажу про правильное питание и порядок его потребления.

Моя задача заключается, раскрыть тему «Питание: белки, жиры, углеводы; классификация витаминов по группам; микро-макроэлементы, совместимость продуктов, роль воды»

Для тoгo чтoбы дoбитьcя peзyльтaтoв в cпopтe, нyжнa мoтивaция, yпopcтвo и вынocливocть. Пpидeтcя мнoгo тpeниpoвaтьcя, зaбoтитьcя o cвoeм здopoвьe и физичecкoм cocтoянии. Здopoвьe в дaннoм вoпpoce oчeнь вaжнo, пocкoлькy пpи ocлaблeннoм иммyнитeтe или пpoблeмe c тeми либo иными opгaнaми и cиcтeмaми opгaнизм мoжeт нe cпpaвитьcя c нaгpyзкaми, и нa cвoих cпopтивных цeлях пpидeтcя пocтaвить кpecт. Oчeнь вaжнo здopoвoe питaниe для cпopтcмeнoв, кoтopoe пoмoжeт пoддepживaть ceбя в тoнyce и пoмoгaть ceбe дocтигaть цeлeй.

Пpaвильнoe питaниe cпopтcмeнa бyдeт зaвиceть oт тoгo, o кaкom имeннo видe cпopтa идeт peчь. Вaжнo, чтoбы opгaнизм пoлyчaл дocтaтoчнoe кoличecтвo витaминoв, минepaльных вeщecтв. Taкжe нyжнo yчитывaть, чтo cпopтивныe нaгpyзки пpивoдят к бoльшим пoтepям opгaнизмoм энepгии, пoэтoмy нyжнo cлeдить и зa кaлopийнocтью paциoнa, и зa тeм, чтoбы пищa былa здopoвoй. К питaнию чeлoвeкa, кoтopый aктивнo зaнимaeтcя cпopтoм, пpeдъявляютcя тaкиe тpeбoвaния:

 

· Koличecтвo кaлopий дoлжнo быть дocтaтoчным.

· Opгaнизм дoлжeн в дocтaткe пoлyчaть витaмины и икpoэлeмeнты.

· Дoпoлнитeльнo peкoмeндyeтcя yпoтpeблять биoлoгичecки aктивныe дoбaвки, aктивизиpyющиe мeтaбoлизм.

· Paциoн дoлжeн плaниpoвaтьcя в зaвиcимocти oт тoгo, кaкoвa вaшa цeль – cнизить или yвeличить мaccy тeлa.

· Meню дoлжнo быть cocтaвлeнo тaк, чтoбы oнo cпocoбcтвoвaлo cнижeнию жиpoвoй мaccы и нapaщивaнию мышeчнoй.
I. Питание: белки, жиры, углеводы.

1.1. Белки относятся к жизненно важным пищевым вещест­вам, без которых невозможен рост и развитие организма. Достаточность белка в питании и высокое его качество по­зволяют создавать оптимальные условия внутренней среды для нормальной жизнедеятельности организма, его развития и высокой работоспособности. Белок является главной составной частью пищевого ра­циона, определяющей характер всего питания. На фоне вы­сокого уровня белка отмечается наиболее полное проявление в организме биологических свойств других компонентов пи­тания. Белок является составной частью протоплазмы клеток (он составляет 45% сухого остатка организма), в которой происходит непрерывный распад белка и одновременный синтез из белков пищи. Белок является также важной составной частью ядер клеток и межклеточных веществ. Особо важное значение имеют специфические белки, которые вхо­дят в состав ферментов, гормонов, антител и других образо­ваний, выполняющих в организме очень сложную и тонкую функцию. К таким белкам относятся глобин, который входит в состав гемоглобина эритроцитов и выполняет важнейшую функцию дыхания, снабжая ткани кислородом; миозин и ак­тин, обеспечивающие мышечные сокращения; глобулины, об­разующие антитела и др.Большое значение имеет белок для высшей нервной дея­тельности. Нормальное содержание его в пище улучшает регуляторные функции коры головного мозга, повышает тонус нервной системы и ускоряет выработку условных рефлексов. При недостатке белка эти процессы ослабляются.

Белки используются в организме, главным образом, как пластический материал. Наряду с этим они участвуют в энергетическом балансе организма, особенно в периоды боль­ших энергетических затрат или при недостаточном содержа­нии в пище углеводов и жиров. Основными составными частями и структурными элемен­тами белков являются аминокислоты. Сочетаясь между со­бой в различных комбинациях, они образуют белки, разнооб­разные по составу и свойствам. В пищевых продуктах наи­более распространены 22 аминокислоты, хотя сейчас извест­но более 80 аминокислот. Общепринято деление аминокислот на заменимые и неза­менимые. Заменимые аминокислоты могут синтезироваться в организме и таким образом дополнять поступление их с пи­щей. Незаменимые аминокислоты не могут синтезироваться в организме и должны поступать готовыми в составе белков пищи. Эти аминокислоты представляют собой ценность и ис­пользуются для синтеза и образования в организме специ­фического белка, секретов, гормонов и других высокоактив­ных в биологическом отношении компонентов. К незамени­мым относятся 8 аминокислот: триптофан, лизин, лейцин, изолейцин, метионин, фенилаланин, треонин, валин.Растительные белки в отличие от животных часто явля­ются менее ценными из-за недостаточного содержания или полного отсутствия в них некоторых незаменимых аминокис­лот. Взрослому человеку в сутки нужно 1,3—1,5 г белка на 1 кг веса (при работе, не связанной с тяжелым физическим трудом). Спортсменам в сутки необходимо от 2,0 до 2,5 г белка на 1 кг веса тела. Особенно много белка нужно при тренировке на силу, в частности, в период наращивания мышечной массы (штангисты, метатели). В этих случаях содержание белка в рационе питания в сутки поднимают до 3,0—4,0 г на 1 кг веса тела. Очень высока потребность в белке при беге на сверхдлинные ди­станции, при многодневных велосипедных гонках (2,5—3,0 r на 1 кг веса).

Довольно высокая потребность в белках у детей. В воз­расте 7—12 лет в сутки необходимо 2,5—3,0 г на 1 кг веса тела, в возрасте 12—16 лет—2 г. Юные спортсмены 11— 13 лет нуждаются в 3 г белка на 1 кг веса тела, а подрост­ки 14—17 лет—в 2—2,5 г на 1 кг веса тела. Для обеспечения нормального аминокислотного состава нужно, чтобы у взрослых спортсменов не менее 60% белков были животного происхождения, а у юных спортсменов — не менее 70%.

1.2.Жиры относятся к основным пищевым веществам и рас­сматриваются как обязательная составная часть сбалансиро­ванного пищевого рациона человека. В состав жиров входят сложные эфиры трехатомного спирта—глицерина (10%), жирные кислоты—глицериды, фосфатиды, стерины и вита­мины (А, Д и токоферол). Наибольшее значение имеют жир­ные кислоты, подразделяющиеся на насыщенные, ненасы­щенные и полиненасыщенные.

Главная роль жиров состоит в доставке энергии, так как при окислении 1 г жира выделяется 9,0 ккал. Но не менее значимы и другие функции жира—пластическая и участие в различных важнейших процессах жизнедеятельности.

Жир является структурным элементом протоплазмы кле­ток. В пластическом отношении наибольшее значение имеют липоиды—главная составная часть клеточных мембран, ко­торые играют важную роль в обмене веществ между клеткой и окружающей средой. Липоиды входят также в состав гор­монов, нервной ткани и оказывают существенное влияние на регуляцию жирового обмена.

Биологическое значение жиров определяется также их влиянием на функциональное состояние центральной нерв­ной системы (тонизирующее действие), содержанием в неко­торых из них витаминов А, Д, Е, способностью увеличивать сопротивляемость организма к неблагоприятным воздействи­ям внешней среды, инфекциям, улучшать усвояемость и вкусовые качества пищи. Особого внимания заслуживают полиненасыщенные жир­ные кислоты (арахидоновая, линолевая, линоленовая), кото­рые по своим свойствам могут считаться жизненно необхо­димыми факторами питания. Полиненасыщенные жирные кислоты относятся к пластическим веществам, участвующим в качестве структурных компонентов в образовании новых тканей и являются необходимым элементом в образовании клеточных мембран, миелиновых оболочек нервов и др.

Роль жиров в энергетическом обеспечении мышечной ра­боты велика и на ней нужно остановиться особо. Мобилиза­ция свободных жирных кислот происходит уже в самом на­чале мышечной работы в связи с влиянием симпатической иннервации, благодаря чему в распоряжении мышечной клетки имеется соответствующий энергетический субстрат. Обычно мышечная клетка отдает предпочтение свободным жирным клеткам по сравнению с другими питательными ве­ществами и усваивает их в первую очередь. При наличии большого количества свободных жирных кислот тормозится потребление мышечной клеткой глюкозы, что способствует использованию прежде всего богатых энергией и имеющих­ся в большом количестве жиров, сокращению расхода глю­козы, что, и свою очередь, ведет к сохранению уровня саха­ра в крови, снижение которого чрезвычайно чувствительно для центральной нервной системы. На практике это означает, что все длительные, отличаю­щиеся невысокой интенсивностью нагрузки, не требующие максимального напряжения сил, могут быть обеспечены преимущественно за счет расходования жиров.

Однако с увеличением интенсивности нагрузки доля жи­ров в обеспечении энергии уменьшается и возрастает роль углеводов. С увеличением степени тренированности возраста­ет интенсивность нагрузки, при которой еще возможно ис­пользование жиров в качестве источника энергии. Так, на­пример, у нетренированных бегунов уже при скорости бега 4,5 м/с роль жиров в обеспечении энергии составляет всего 10—15%, у тренированных бегунов при такой скорости бега сохраняется значительное участие жиров в энергообмене— около 80%. У последних снижение роли жиров в энергообес­печении до 10—15% происходит при скорости бега 5,8 м/с. Нормы потребления жира для лиц молодого и среднего возраста 1,3—1,5 г на 1 кг веса тела в сутки. Для спортсме­нов нормы жира в рационах питания определяются в зави­симости от потребления белка, но отношение белок/жир должно быть 1,0:0,8 или 1,0:0,7. Например, при потребле­нии 2,5 г белка на 1 кг веса берется 2,0 или 1,75 г жира на 1 кг веса тела. Животные жиры, содержащие витамин А и Д, имеют хороший вкус и легко усваиваются. Они должны составлять 80—85% от всего количества жира. Растительные жиры, в которых содержатся полиненасыщенные жирные кислоты, фосфатиды, витамин Е, ситостерины должны со­ставлять 15—20%. Для обеспечения организма этими веществами следует ежедневно употреблять 20—30 г расти­тельного масла в салатах, винегретах и т. д.

Чтобы спортсмены получали необходимую им долю жи­ров (24—25% от общей калорийности), вполне достаточно жиров, находящихся в скрытом виде в мясе, колбасах, мо­лочных продуктах и пр. При этом следует больше употреб­лять нежирные сорта мяса, колбас, 3-процентное молоко, нежирный творог и пр.

1.3.Углеводы служат основным источником энергии, они обес­печивают более половины суточной калорийности пищевого рациона. Углеводы используются для поддержания уровня гликогена в печени и мышцах, обновления его запасов, а также для поддержания постоянного уровня сахара в крови, расходуемого для нужд клеток и тканей.

Достаточное поступление углеводов с нищей при хорошей их усвояемости сопровождается минимальным расходом бел­ка. Углеводы тесно связаны с обменом жира. В случаях не­достаточного поступления углеводов при высоких энерготратах, когда расход энергии не покрывается ни углеводными запасами организма, ни углеводами пищи, начинается обра­зование сахара из жира и, наоборот, ограниченная способ­ность углеводов депонироваться в организме в виде гликоге­на влечет за собой относительно легкое превращение избы­точного количества углеводов в жир, который накапливается в жировых депо.

Углеводы пищевых продуктов в зависимости от химиче­ской структуры, быстроты усвоения и использования для гликогенообразования подразделяются на простые (сахар) н сложные (крахмал и др.). К простым углеводам относятся моно- и дисахариды, характерными особенностями которых являются легкая растворимость в воде, высокая усвояемость и быстрое использование для гликогенообразования. Простые углеводы обладают выраженным сладким вкусом и при вве­дении в организм быстро обнаруживаются в крови. Всасыва­ние сахаров происходит настолько быстро, что при избыточ­ном их поступлении возникает гипергликемия и глюкозурия. Поэтому одновременно нельзя вводить более 100—150 г са­хара или глюкозы. Для гликогенообразования наиболее лег­ко и быстро используются моносахариды: глюкоза и фрук­тоза. К сложным углеводам — полисахаридам относятся крах­мал, гликоген, клетчатка. Крахмал—основное питательное вещество растительных продуктов, особенно зерновых и бо­бовых культур, а также картофеля. В организме человека крахмал является основным источником постоянного, систе­матического обеспечения нужд организма глюкозой путем постепенного ее образования из крахмала. Медленное пре­вращение крахмала и постепенное образование глюкозы соз­дают благоприятные условия для наиболее полного исполь­зования ее в организме, при этом никогда не возникает гипергликемия. Поэтому в состав питательных смесей для спортсменов должны входить различные комбинации про­стых сахаров (быстрое поступление в кровь) и крахмала (длительное поступление в кровь).

Суточная норма потребления углеводов для здоровых людей—5,2—6 г на 1 кг веса тела, для спортсменов—8— 10 г и более на 1 кг веса. При этом на долю простых саха­ров должно приходиться до 35% от всего количества угле­водов, а на долю полисахаридов—65%. Для здоровых лю­дей, не занимающихся спортом, это соотношение иное — 15%: 85%.

Хорошим источником глюкозы являются фрукты и яго­ды: виноград (7,2%), хурма (6,6%), вишня (3,8—5,3%), бананы (4,7%). Важным природным источником фруктозы являются арбузы и пчелиный мед (37,1% фруктозы).

Витамины представляют собой низкомолекулярные орга­нические соединения, обладающие большой биологической активностью. Действие их проявляется при приеме ничтож­но малых количеств и выражается в основном в усилении и регулировании жизненно важных функций.

Поступив в организм, многие витамины входят в состав ферментов, находящихся в клетках и тканях организма, и действуют в качестве коферментов, которые активно участ­вуют в сложных биохимических реакциях превращения пи­щевых веществ на клеточном и молекулярном уровнях.

Установлена тесная связь между витаминами и гормона­ми, витаминами и функциональным состоянием центральной и периферической нервной системы. Недостаток витаминов проявляется в виде болезненных расстройств общего и специфического характера. Наиболее распространенными симптомами их являются падение веса, задержка роста, потеря аппетита, быстрая утомляемость и мышечная слабость, понижение сопротивляемости к инфек­циям и регенеративной способности тканей, нарушение дея­тельности нервной системы.

Большие физические и психические нагрузки, которым подвергаются спортсмены, и неизбежно возникающая при этом напряженность метаболических процессов обуславли­вают повышенную потребность организма спортсмена в вита­минах. Однако следует помнить, что избыток витаминов да­леко не безразличен и бесконтрольный прием их в большом количестве может оказать отрицательное влияние на орга­низм спортсмена. При занятиях спортом прежде всего воз­растает потребность в аскорбиновой кислоте, тиамине, рибо­флавине, ниацине, витамине А, токофероле и некоторых других.

 

 

II. Классификация витаминов по группам.

2.1. Жирорастворимые витамины. Витамин А (ретинол) является предшественником группы "ретиноидов ", к которой принадлежат ретиналь и ретиноеваякислота. Ретинол образуется при окислительном расщеплении провитамина β-каротина. Ретиноиды содержатся в животных продуктах, а β-каротин — в свежих фруктах и овощах (в особенности в моркови). Ретиналь обуславливает окраску зрительного пигмента родопсина. Ретиноевая кислота выполняет функции ростового фактора. При недостатке витамина А развиваютсяночная ("куриная") слепота, ксерофтальмия (сухость роговой оболочки глаз), наблюдается нарушение роста.

Витамин D (кальциферол) при гидроксилировании в печени и почках образует гормон кальцитриол (1α,25-дигидроксихолекальциферол). Вместе с двумя другими гормонами (паратгормоном, или паратирином, и кальцитонином) кальцитриол принимает участие в регуляции метаболизма кальция. Кальциферол образуется из предшественника 7-дегидрохолестерина, присутствующего в коже человека и животных, при облучении ультрафиолетовым светом. Если УФ-облучение кожи недостаточно или витамин D отсутствует в пищевых продуктах, развивается витаминная недостаточность и, как следствие, рахит у детей, остеомаляция (размягчение костей) у взрослых. В обоих случаях нарушается процесс минерализации (включения кальция) костной ткани.

Витамин Ε включает токоферол и группу родственных соединений с хромановым циклом. Защищает в организме ненасыщенные жирные кислоты и витамин А от окисления (природный антиоксидант). Такие соединения содержатся только в растениях, особенно их много в проростках пшеницы. Для ненасыщенных липидов эти вещества являются эффективными антиоксидантами.

Витамин К — общее название группы веществ, включающей филлохинон и родственные соединения с модифицированной боковой цепью. Недостаток витамина К наблюдается довольно редко, так как эти вещества вырабатываются микрофлорой кишечника. Витамин К принимает участие в карбоксилировании остатков глутаминовой кислоты белков плазмы крови, что важно для нормализации или ускорения процесса свертывания крови. Процесс ингибируется антагонистами витамина К (например, производными кумарина), что находит применение как один из методов лечения тромбозов.

Водорастворимые витамины Витамин B1 (тиамин) построен из двух циклических систем — пиримидина (шестичленный ароматический цикл с двумя атомами азота) и тиазола (пятичленныи ароматический цикл, включающий атомы азота и серы), соединенных метиленовой группой. Активной формой витамина Β1 является тиаминдифосфат, выполняющий функцию кофермента при переносе гидроксиалкильных групп ("активированных альдегидов"). Оказывает благотворное действие на клеточное дыхание, процессы ассимиляции, обмен веществ, углеводный, жировой, белковый, минеральный обмен, сердечно-сосудистую систему и органы пищеварения, функцию нервной системы, в том числе на нервную трофику (питание). При недостатке витамина Β1развивается болезнь бери-бери, признаками которой являются расстройства нервной системы (полиневриты), сердечно-сосудистые заболевания и мышечная атрофия.

Витамин B2 Рибофлавин — комплекс витаминов, включающий рибофлавин, фолиевую, никотиновую и пантотеновую кислоты. Активно участвует в обмене веществ: окислительно-восстановительных процессах, клеточном дыхании, окислении углеводов, молочной кислоты, альдегидов, обмене жиров, порфиринов, синтезе белков, окислительном дезаминировании аминокислот. Необходим для обеспечения роста.

Рибофлавин оказывает регулярующее действие на функцию ЦНС, особенно ее вегетативного отдела, стимулирует эритропоэз (генерацию новых клеток крови - эритроцитов), регулирует функции печени, благоприятно влияет на сетчатку глаза и пр.

Витамин В6 — групповое название трех производных пиридина: пиридоксаля, пиридоксина и пиридоксамина. Активной формой витамина В6 является пиридоксаль-5-фосфат, важнейший кофермент в метаболизме аминокислот. Пиридоксальфосфат входит также в состав гликоген-фосфорилазы, принимающей участие в расщеплении гликогена. Дефицит витамина В6 встречается редко.

Витамин В12 (кобаламины; лекарственная форма — цианокобаламин) - комплексное соединение, имеющее в основе циклкоррина и содержащее координационно связанный ион кобальта. Этот витамин синтезируется лишь в микроорганизмах. Из пищевых продуктов он содержится в печени, мясе, яйцах, молоке и полностью отсутствует в растительной пище (на заметку вегетарианцам!). Витамин всасывается слизистой желудка только в присутствии секретируемого (эндогенного) гликопротеина, так называемого внутреннего фактора. В организме витамин В12 запасается в печени.

Играет важную роль в процессах гемопоэза (кроветворения), регуляции эритропоэза (созревании эритроцитов), вместе с фолиевой кислотой участвует в белковом обмене - синтезе метильных групп, образовании метионина, холина. Кроме того, вместе с фолиевой кислотой витамин B12 участвует в синтезе нуклеиновых кислот, способствует ассимиляции аминокислот и их лучшему использованию клетками. Витамин B12 способствует превращению в организме каротина в витамин А и его отложению в тканях.

Витаминный дефицит или нарушение всасывания витамина В12 связаны главным образом с прекращением секреции внутреннего фактора. Следствием авитаминоза является пернициозная анемия.

Витамин С (L-аскорбиновая кислота) представляет собой γ-лактон 2,3-дегидрогулоновой кислоты. Обе гидроксильные группы имеют кислотный характер, в связи с чем при потере протона соединение может существовать в форме аскорбат-аниона.

Принимает участие в окислительно-восстановительных реакциях, в обеспечении нормального течения белкового, углеводного и жирового обмена. Под действием витамина С органы обогащаются гликогеном, в крови повышается количество пирвиноградной кислоты, мелкодисперстных белков, окисление тирозина, регулируется содержание полипептидов и холестерина. Он благотворно влияет на ассимиляторно-диссимиляторные процессы в клетке, регенерацию аморфного склеивающего вещества эндотелия капилляров, на регулярование проницаемости капилляров и образование коллагена. Оказывает влияние на иммуно-биологические реакции организма.

Витамин С стимулирует образование антител, повышает фагоцитарную активность крови, пролиферацию ретикулоэндотелиальных элементов, предотвращает возникновение или смягчает течение анафилактического шока.

Витамин С оказывает благоприятное влияние на антитоксическую функцию печени, стимулирует внешнесекреторную функцию поджелудочной железы, образование протромбина, эритропоэз, фильтрационную способность почек и др.

Источником витамина С являются свежие фрукты и овощи. Аскорбиновую кислоту добавляют во многие напитки и пищевые продукты в качестве антиоксиданта и вкусовой добавки. Витамин С медленно разрушается в воде. Аскорбиновая кислота в качестве сильного восстановителя принимает участие во многих реакциях (главным образом в реакциях гидроксилирования). Из биохимических процессов с участием аскорбиновой кислоты следует упомянуть синтез коллагена, деградацию тирозина,синтезы катехоламина и желчных кислот. Суточная потребность в аскорбиновой кислоте составляет 60 мг — величина, не характерная для витаминов. Сегодня дефицит витамина С встречается редко. Дефицит проявляется спустя несколько месяцев в форме цинги (скорбута). Следствием заболевания являются атрофия соединительных тканей, расстройство системы кроветворения, выпадение зубов.

Витамин H (биотин) содержится в печени, яичном желтке и других пищевых продуктах; кроме того, он синтезируется микрофлорой кишечника.

Витамин Р (биофлавоноиды, полифенолы).

Вещества с Р-витаминным действием - природные соединения, так называемые полифенолы, наряду с аскорбиновой кислотой обеспечивают нормальную проницаемость капилляров, регенерацию их аморфного склеивающего вещества.

Под влиянием соединений, обладающих Р-витаминным действием, понижается артериальное давление крови, замедляется ритм сердца, увеличивается его минутный объем, повышается диурез, желчевыведение, увеличивается содержание кальция в сыворотке крови, усиливается тканевое дыхание, уменьшается гипоксия, снижается повышенная функция щитовидной железы и др.

Биологический эффект витамина Р тесно связан с аскорбиновой кислотой. Витамин Р способствует усвоению витамина С.

Витамин РР (ниацин, никотиновая кислота)

Широко участвует в разнообразных процессах обмена веществ (окислительно-восстановительные процессы, регуляция углеводного обмена, соотношение между содержанием в организме никотиновой кислоты и использованием организмом пищевого белка, обмен холестерина, обмен железа и т.п.).

Заболевания, связанные с дефицитом ниацина, проявляются поражением кожи (пеллагра), расстройством желудка и депрессией.

Фолацин (фолиевая кислота).

Содержится в листьях растений, дрожжах, печени, почках. Участвует в процессах гемопоэза (кроветворения). Она необходима для регуляции эритропоэза (синтеза эритроцитов крови), тромбоцитопоэза (генерации тромбоцитов) и особенно лейкопоэза (образование лейкоцитов крови), оказывает стимулирующее влияние на синтез белков (катализатор синтеза аминокислот). Синтезируется в организме.

Пантотеновая кислота (витамин B3).

Важна при расщеплении жиров, углеводов и аминокислот, а также для синтеза жизненно важных жирных кислот и некоторых гормонов. Синтезируется микрофлорой кишечника.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: