Методы абсолютной геохронологии




Понятие об относительной и абсолютной геохронологии. Методы опр-ия возраста пород(палеонтологический, стратиграфический)

Геохронология — комплекс методов определения возраста пород или минералов с целью определения временной последовательности их образования.

В развитии геохронологии выделяются два весьма различающихся способа подхода к решению задачи, широко используемых до настоящего времени:

1. Методы определения относительного возраста геологических образований;

2. Методы абсолютной геохронологии.

Палеонтологический метод- возник в конце XVIII в., когда английский геолог Смит в 1799 г. обнаружил, что в слоях одинакового возраста всегда содержатся ископаемые одних и тех же видов. Он также показал, что остатки древних животных и растений размещены (с увеличением глубины) в одном и том же порядке, хотя расстояния между местами, где они обнаружены, очень большие.

Абсолютный метод - В основе метода лежит явление самопроизвольного радиоактивного распада. Абсолютное опр-ие возраста породы.

СТРАТИГРАФИЧЕСКИЙ МЕТОД - в археологии - определение относительной хронологии культурных остатков, сооружений и находок в зависимости от их залегания в слое. Используется при археологических раскопках

16. Методы абсолютной геохронологии:

Методы абсолютной геохронологии - позволяют определить абсолютный возраст горных пород, длительность их формирования во времени. Сюда относятся методы определения абсолютного возраста по скорости накопления осадков, метод ленточных глин, изотопные методы. Изотопные методы - основаны на подсчете времени распада радиоактивных элементов, содержащихся в горных породах. В настоящее время применяются уран-свинцовый, рубидий-стронциевый, калий-аргоновый и радиоуглеродный методы.

Методы абсолютной геохронологии

1. Определение абсолютной продолжительности отдельных отрезков геологического прошлого путем изучения сезонности в накоплении осадков /метод «варз» де Гера и др./

2. Методы абсолютной геохронологии, основывающиеся на определении скорости геологических процессов в современную геологическую эпоху.

3. Определение абсолютного возраста пород на основе радиоактивного распада некоторых химических элементов.

4. Данные радиогеологии о возрасте Земли и абсолютной продолжительности отдельных геологических периодов.

17. Геохронологическая и стратиграфические шкалы. Их главные подразделения.

еохронологи́ческая шкала́ — геологическая временная шкала истории Земли, применяемая в геологии и палеонтологии, своеобразный календарь для промежутков времени в сотни тысяч и миллионы лет.

 

Эон — длительный период времени, состоящий из нескольких эр.

э́ра — это участок геохронологической шкалы, подинтервал эона,

Геологи́ческий пери́од — это участок геохронологической шкалы, подинтервал геологической эры.

Геологическая эпоха — геохронологическая единица, часть периода,

 

18. Краткие сведения об эратемах и системах, их индексация:

 

Эратема- ( геол.), подразделение общей стратиграфической шкалы, подчинённое эонотеме и подразделяющееся на системы геологические.

Система геологическая- основное подразделение международной стратиграфические шкалы, отвечающее естественному этапу в развитии земной коры и органического мира Земли. Промежуток времени, в течение которого сформировалась С. г., носит название период геологический. В новейшей истории Земли — фанерозое — насчитывается 12 С. г.;

 

19.Средства и методы познания недр Земли:

-Для познания глубоких недр Земли в наше время больше всего дает сейсмология — наука о землетрясениях.

Вдали от эпицентра, т. е. места наибольшего сотрясения на поверхности Земли, землетрясение людьми не ощущается, но чувствительные приборы — сейсмографы — записывают на бумажной ленте колебания почвы. Сильные землетрясения записываются даже на другой стороне земного шара. По этим записям — сейсмограммам — удается установить путь упругой волны в толще Земли и ее скорость в каждой точке пути.

- Так же используется- Магнитометрия изучает магнитное поле Земли (см. ст. «Земля — магнит»). Магнитные аномалии (нарушения) указывают на залежи пород, способных намагничиваться. Сильно намагничиваются некоторые железные руды, слабее — лавы вулканов и другие породы.

- Электрометрия изучает электрические токи в Земле. Для разведки полезных ископаемых на исследуемой площади создают искусственно ток и, измеряя силу его в разных точках, определяют расположение пород с различной электропроводностью.

- Для изучения более глубоких недр Земли используется магнитотеллурическое зондирование. Оно состоит в том, что наблюдают одновременно вариации (изменения) магнитного поля, порождаемые космическими причинами, и теллурические (земные) токи, возникающие в Земле как следствие этих вариаций благодаря индукции. Этот метод позволяет определить электропроводность вещества Земли на различных глубинах, вплоть до нескольких сотен километров.(https://www.clow.ru/a-zemlja2/1240.htm)

 

20. Экзогенные и эндогенные геодинамические процессы их энергетические источники роль в изменении рельефа земной коры:

Одни из них связаны с силами, возникающими внутри Земли, и называются процессами внутренней динамики или эндогенными процессами. К ним относятся: магматизм, метаморфизм горных пород, так называемые колебательные вертикальные движения земной коры, тектонические движения, вызывающие складчатые и разрывные нарушения горных пород и образование гор, землетрясения. Другие процессы проявляются на поверхности Земли или в верхних частях земной коры и связаны с воздействием разнообразных внешних факторов (атмосферы, гидросферы, биосферы и т. д.). Поэтому они называются процессами внешней динамики или экзогенными процессами. К ним относятся: выветривание (разрушение горных пород под воздействием колебаний температуры, воды, кислорода и углекислого газа атмосферы и органического мира), деятельность ветра, атмосферных осадков и поверхностных текучих вод, подземных вод и ледников; работа морей и озер; процессы происходящие в болотах. Процессы выветривания и разрушительная деятельность других внешних агентов приводят к образованию большого количества обломочного материала и растворенных веществ. Эти продукты разрушения или перемещаются под действием силы тяжести, или захватываются ветром, текучими водами, ледниками и сносятся в озера, моря, океаны и другие понижения рельефа.

В результате этих процессов постепенно разрушаются и понижаются горы и возвышенности, а впадины рельефа заполняются осадками. Если - бы эти процессы происходили достаточно долго, то поверхность Земли превратилась бы в равнину. Но формы земной поверхности определяются взаимодействием эндогенных и экзогенных процессов. Внутренние силы приводящие к тектоническим движениям создают неровности земной поверхности, а внешние - нивелируют рельеф. В природе тектонического покоя не существует, все находится в непрерывном движении и изменении, и менее периодически происходит замедление процессов, которые затем снова усиливаются.

С деятельностью внутренних и внешних процессов связано и изменение вещества земной коры - разрушение или изменение одних горных пород и создание новых пород обуславливает образование различных полезных ископаемых.

 

21.Пликативные нарушения. Складки и их элементы. Главные типы складок.

Пликативные дислокации (складчатые нарушения) — это дислокации, которые происходят без разрыва сплошности пластов горных пород.Среди них различают следующие основные виды тектонических нарушений: моноклинали флексуры и складки

Нарушения (дислокации) пликативные - нарушения, которые происходят без разрыва слоев и других геологических тел.

Складки - волнообразные изгибы слоев самых различных масштабов и разнообразных форм, представляют собой важнейший вид тектонических нарушений.

В складках выделяют следующие элементы:

Ядро - внутренняя часть складки.

Крылья - бока складки (слои, имеющие односторонний наклон).

Осевая плоскость (осевая поверхность) - поверхность, разделяющая складку на две равные части (разделяющая угол складки пополам).

Осевая линия (ось) - линия пересечения осевой плоскости складки с поверхностью Земли.

Шарнир - линия, проходящая по кровле или подошве слоя на его перегибе или, другими словами, линия пересечения верхней или нижней поверхности слоя с осевой плоскостью. Шарнир можно провести по кровле любого слоя.

Замок - участок складки в ближайших окрестностях к шарниру (зона встречи крыльев).

Высота складки - расстояние по вертикали между шарнирами смежных антиклинали и синклинали (по подошве или кровле какого-либо одного слоя).

Ширина складки - расстояние между осевыми линиями двух соседних антиклиналей или синклиналей.

Угол складки - угол, образуемый плоскостями, продолжающими крылья складки, или плоскостями, касательными к крыльям.

Типы складок:

Антиклиналь- если изгиб слоев обращен выпуклостью вверх (в ядре залегают более древние слои, на крыльях - более молодые)

Синклиналь- если изгиб слоев обращен выпуклостью вниз (в ядре залегают более молодые слои, на крыльях - более древние).

моноклиналь - участок более-менее крутого, но однородного падения слоев. Моноклиналь может занимать вертикальное положение (слои стоят "на головах").

Прямая (симметричная) складка - осевая плоскость вертикальна.

Косая (наклонная) складка - осевая плоскость наклонна, крылья падают в противоположных направлениях под разными углами.

Флексура - складка в виде коленчатого изгиба слоев (поднятое, опущенное и соединительное крылья).

Опрокинутая складка - осевая плоскость наклонена, крылья падают в одну сторону.

Лежачая складка - осевая плоскость горизонтальна; крылья также близки к горизонтальному положению; одно из них перевернуто.

Перевернутая складка - осевая плоскость погружается; крылья как бы меняются местами, слои в них могут быть перевернуты (подошва вверху, кровля внизу)

22.

Магматизм

процесс выплавления магмы, ее дальнейшего развития,перемещения, взаимодействия с твердыми горными породами и застывания.Магматизм - проявление глубинной активности Земли; тесно связан с ееразвитием, тепловой историей и тектонической эволюцией. Выделяют магматизмгеосинклинальный, платформенный, океанический, магматизм областейактивизации; по глубине проявления - абиссальный, гипабиссальный,поверхностный (вулканизм); по составу магмы - ультраосновной, основной,кислый, щелочной.

Магматизм является проявлением глубинной активности Земли; он тесно связан с ее развитием, тепловой историей и тектонической эволюцией.

Выделяют магматизм:

  • геосинклинальный,
  • платформенный,
  • океанический,
  • магматизм областей активизации.

По глубине проявления:

  • абиссальный,
  • гипабиссальный,
  • поверхностный.

По составу магмы:

  • ультраосновной,
  • основной,
  • кислый,
  • щелочной.

Магма (греч. — месиво, густая мазь) представляет собой при­родный, чаще всего силикатный, огненно-жидкий расплав, воз­никающий в земной коре или в верхней мантии, на больших глубинах, и при остывании формирующий магматические горные породы. Излившаяся магма — это лава.

Ла́ва — раскаленный жидкий (эффузия) или очень вязкий (экструзия), расплав горных пород, преимущественно силикатного состава (SiO2 примерно от 40 до 95%), изливающийся на поверхность Земли при извержениях вулканов. При застывании лавы образуются эффузивные (излившиеся) горные породы, может образоваться лавовое плато. Температура лавы колеблется в пределах от 700 до 1200°C.

 

Интрузивный магматизм - процесс внедрения и застывания магмы в породах земной коры с образованием на разных глубинах своеобразных интрузивных форм.

батолиты - крупные гранитные интрузии, S - сотни и тысячи км2, в глубину - неопределено.

штоки - столбообразные тела, изометричные, S < 100 - 150 км2.

 

23. Интрузии и их типы. Примеры согласных и секущих интрузий

Интру́зия (интрузивный массив) — геологическое тело, сложенное магматическими горными породами, закристаллизовавшимися в глубине земной коры.

По взаимоотношениям с вмещающими породами выделяют согласные и несогласные интрузии. Контакты согласных интрузий конформны слоистости вмещающих пород. К согласным интрузиям относятся силлы, лакколиты, лополиты. Несогласные интрузии — дайки, штоки, батолиты; все они имеют секущие контакты, срезающие структурные элементы вмещающих толщ.

При классификации интрузий используются также такие признаки, как форма и размер тел. По глубине формирования выделяют приповерхностные, среднеглубинные (гипабиссальные) (0,5—1,5 км), и глубинные, или абиссальные (более 1,5 км) интрузии.

Глубинные интрузии сложены полнокристаллическими магматическими породами, в то время как малоглубинные часто имеют порфировые и афировые структуры. Интрузии слагают значительные части земной коры, как океанической, так и континентальной

В зависимости от соотношения интрузивных тел со стратификацией вмещающих толщ различают согласные, внедрившиеся вдоль поверхностей напластования слоистых толщ, и несогласные (секущие), располагающиеся под тем или иным углом к стратиграфич. разделам. По форме среди согласных выделяют Силлы, Лакколиты, факолиты - линзовидные интрузивные тела в ядрах антиклинальных и реже синклинальных складок. Среди несогласных, секущих, наиболее распространены Дайки. Более или менее изометричные в плане именуются Штоками, а цилиндрич. формы - бисмалитами. Могут быть однородными по своему петрографич. составу и дифференцированными.

 

Секущие интрузивные тела приурочены обычно к тектонич. разрывам и встречаются как в относительно стабильных, так и в подвижных участках земной коры. Согласные И. более обычны для консолидир. областей.

 

24. Магматизм, причины разнообразия магматических пород (дифференциация, ликвация и т.д)

Магматические породы образовались в результате застывания магмы. Процесс их образования состоит в постепенной кристаллизации последней с последовательным выделением твердых минеральных компонентов при ее остывании до полного перехода в твердое состояние. При этом имеют огромное значение величины давлений, температура и содержание в ней минерализаторов — паров воды, углекислоты и др

Дифференциация (в геологии) — совокупность различных процессов, разделяющих вещество, материю. В частности кристаллизационная дифференциация происходит благодаря кристаллизации минералов: так как кристаллизующиеся минералы имеют состав отличный от состава расплава, то в процессе кристаллизации состав расплава меняется, что может привести к очень значительным отклонениям от первичного расплава.

Ликвация: в геологических науках процесс распада однородной жидкости на две несмесимые жидкости.

В зависимости от условий образования магматические породы разделяются на глубинные (интрузивные), излившиеся (эффузивные) и полуглубинные (гипабиссальные). Глубинные породы образуются на больших глубинах в условиях высоких температуры и давления, медленного и равномерного остывания магмы. Оно завершается формированием разновидностей с полнокристаллической структурой, массивной текстурой и равномерным распределением минеральных составных частей в массе породы, любые участки которой одинаковы по составу и структуре

 

В составе магматических пород существенное значение имеют оксиды SiO2; А12О3; FeO; MgO; CaO; Na2O; K2O; H2O и особенно первый, являющийся надежной характеристикой их химического состава. В зависимости от количественного содержания кремнезема все магматические породы разделяются на: ультракислые — свыше 75%; кислые — от 65 до 75%; средние — от 52 до 65%, основные — от 40 до 52% и ультраосновные— менее 40% кремнезема.

ИЗ этого следует их разнообразие. Ничего не нашёл про разнообразие

 

25. Понятие о метаморфизме, агенты метаморфизма, классификация.

Метаморфизм (греч. metamorphoómai — подвергаюсь превращению, преображаюсь) — процесс твердофазного минерального и структурного изменения горных пород под воздействием температуры и давления в присутствии флюида.

Выделяют изохимический метаморфизм — при котором химический состав породы меняется несущественно, и не изохимический метаморфизм (метасоматоз) для которого характерно заметное изменение химического состава породы, в результате переноса компонентов флюидом.

По размеру ареалов распространения метаморфических пород, их структурному положению и причинам метаморфизма выделяются:

  • Региональный метаморфизм который затрагивает значительные объемы земной коры, и распространен на больших площадях.
    • Метаморфизм сверхвысоких давлений
  • Контактовый метаморфизм приурочен к магматическим интрузиям и происходит от тепла остывающей магмы.
  • Динамометаморфизм происходит в зонах разломов, связан со значительной деформацией пород.
  • Импактный метаморфизм происходит при ударе метеорита о поверхность планеты.
  • Автометаморфизм

. Главными факторами (агентами) метаморфизма являются эндогенное тепло, всестороннее (петростатическое) давление, химическое воздействие газов и флюидов. Постепенность нарастания интенсивности факторов метаморфизма позволяет наблюдать все переходы от первично осадочных или магматических пород к образующимся по ним метаморфическим породам. Метаморфические породы обладают полнокристаллической структурой. Размеры кристаллических зерен, как правило, увеличиваются по мере роста температур метаморфизма.

 

Таблица 5.3. Классификация метаморфических пород

Исходные породы Породы, образованные при температуре
низкой и средней (менее 400 °С) высокой (400-600 °С) весьма высокой (600-800 °С)
Региональный метаморфизм
Алюмосиликатные об­ломочные (песчаники, кремнистые сланцы) Метаморфизованные песчаники, кварцито-песчаники, метаморфизованные конгло­мераты Кварциты, гнейсы, метаморфизованные конгломераты Кварциты, метамор­физованные кварциты, гнейсы, гранито-гней­сы, метаморфизованные конгломераты
Карбонатные (известня­ки, доломиты и т.д.) Кристаллические известняки и доломиты Мраморы, доломитовые мраморы, диопсидовые и тремолитовые мраморы Мраморы, известково-силикатные кри­сталлические породы (бескварцевые гнейсы, мигматиты, диопсид-карбонатные, диопсид-скаполитовые, диопсид-амфиболовые породы)
Глиноземистые (глины, аргиллиты, алевролиты, мергели, кислые туфы и др.) Филлиты Кристаллические сланцы, гнейсы Инъецированные гнейсы и мигматиты, гранито-гнейсы, чарнокиты
Железисто-магнезиальные (глины монтмориллонитовые, туфы основные и др.) Зеленые сланцы Амфиболиты, амфиболиты полевошпа­товые, сланцы кристаллические, гнейсы Амфиболиты, амфиболовые и пироксе-новые мигматиты, гней­сы инъецированные
Эффузивные различного состава Порфириты, порфиритоиды, серици-товидные и зеленые сланцы Кристаллические ортосланцы и ортоамфибо­литы Ортогнейсы, мигматиты, гранито-гнейсы, гнейсо-граниты
Ультраосновные и основные интрузивные Талько-хлоритовые, талько-карбонатные породы, зеленые сланцы Ортоамфиболиты, гранатовые амфиболиты Ортоамфиболиты, гранатовые амфиболиты, мигматиты
Средние и кислые интрузивные Ортогнейсы, очковые гранито-гнейсы Ортогнейсы, гнейсовидные граниты
Контактовый метаморфизм
Алюмосиликатные обломочные Ороговикованные песчаники, алевролиты и др. Контактовые роговики Мигматиты, гранитизированные породы
Карбонатные Кристаллические известняки и доломиты Мраморы, тремолитовые, волостонитовые, диопсидовые породы, известково-силикатовые роговики Мраморы и скарноиды
Глинистые туфы и туффиты Пятнистые и узловатые сланцы Контактовые роговики Мигматиты, гранитизированные породы
Эффузивные различного состава Ороговикованные эффузивы То же Гранитизированные породы или мигматиты

 

 

?? 26. Главные типы метаморфических процессов. Автометаморфизм (грейнизация, сернцентизация)

 

 

Все метаморфические процессы можно разделить на две группы. В одной из них химический состав метаморфизуемых пород не изменяется, т.е. преобразование происходит изохимически. Во второй группе наблюдается изменение состава пород за счет привноса или выноса компонентов. Такой процесс называется аллохимическим. Под воздействием процессов метаморфизма происходят перекристаллизация исходных пород, изменение минерального, а нередко и химического состава. Метаморфические процессы могут быть разной интенсивности, поэтому в природе наблюдаются все постепенные переходы от практически неизмененных или слабо измененных пород, первичная текстура, структура и состав которых сохранились, до пород, измененных настолько сильно, что восстановить их первичную природу невозможно. Усиление степени метаморфизма, т.е. увеличение температуры (Т), давления (Р) и концентрации флюидов, приводит к изменению или распаду неустойчивых минералов на более устойчивые ассоциации.

Автометаморфизм (геол.), изменение магматической горной породы в процессе её отвердевания, происходящее под действием растворов, отделяющихся от породы во время её охлаждения.

 

27. Понятия о региональном метаморфизме и его продуктах (филлиты, сланцы, гейзеры)

 

Региональный метаморфизм, совокупность изменений горных пород под воздействием глубинных трансмагматических растворов (флюидов), ориентированного (одностороннего) и гидростатического (всестороннего) давления и температуры. Р. м. выражается в глубоких преобразованиях структуры и минерального состава горных пород в пределах обширных регионов в связи с развитием складчатости горных пород и орогенезом. Односторонним давлением обусловливаются сланцевые и гнейсовые текстуры горных пород. Гидростатическое давление определяется глубиной; возрастание его вызывает метаморфические реакции между минералами, ведущие к уменьшению объёма горных пород. По температуре различаются высокая, средняя и низкая степени Р. м. Продукты Р. м. (амфиболиты, филлиты, гнейсы, мигматиты) выходят на поверхность земли в пределах древних щитов и кристаллических массивов. На больших глубинах Р. м. обычно однороден (степень метаморфизма выдерживается на значительных пространствах). На меньших глубинах наблюдаются различные степени метаморфизма, выделяется неоднородный Р. м. Последовательное понижение степени метаморфизма прослеживается в антиклинориях, гранито-гнейсовых куполах и др. геологических структурах, где отмечается зональное распределение продуктов Р. м., различающихся минералогическими и структурными признаками (зональный метаморфизм). С уменьшением объёма метаморфических проявлений Р. м. переходит в локальный метаморфизм, который контролируется местными структурами — контактами с интрузивными массивами, разломами и др.

Филлит (от греч. phýllon – лист), метаморфическая горная порода, состоящая главным образом из мелких чешуек серицита или хлорита и характеризующаяся тонкой сланцеватостью; кроме того, в составе Филлит присутствуют зёрна обломочного кварца, иногда – новообразованные кристаллы альбита. Цвет обычно тёмно-серый или чёрный. Филлит образуются при слабом региональном метаморфизме преимущественно глинистых осадков и связаны с ними постепенными переходами от собственно глинистых сланцев до слюдяных сланцев.

Сла́нцы — горные породы, с параллельным (слоистым) расположением минералов, входящих в их состав. Сланцы характеризуются сланцеватостью — способностью легко расщепляться на отдельные пластины.

В некоторых, например, в золенгофенских сланцах (плотных тонкозернистых породах, предположительно, образовавшихся в морских лагунах) обычно содержится множество ископаемых останков.

В строительстве применяется в качестве наружного отделочного материала, а также, как верхний слой кровли (шифер).

 

Ге́йзер (исл. geysir, название одного из источников «Золотого кольца», от исл. geysa — хлынуть) — источник, периодически выбрасывающий фонтаны горячей воды и пара. Гейзеры являются одним из проявлений поздних стадий вулканизма, распространены в областях современной вулканической деятельности.

 

Гейзеры могут иметь вид небольших усечённых конусов с достаточно крутыми склонами, низких, очень пологих куполов, небольших чашеобразных углублений, котловинок, неправильной формы ям и др.; в их дне или стенках находятся выходы трубообразных или щелеобразных каналов.

Деятельность гейзера характеризуется периодической повторяемостью покоя, наполнения котловинки водой, фонтанирования пароводяной смеси и интенсивных выбросов пара, постепенно сменяющихся спокойным их выделением, прекращением выделения пара и наступлением стадии покоя.

28. Динамометаморфизм и его продукты

 

Динамометаморфизм - метаморфизм происходящий в разломах. Связан с воздействием сильного одностороннего давления и высокой температуры. Одностороннее давление обусловлено тектоническими движениями в земной коре; высокая температура может быть связана с различными источниками тепла: глубинного, выраженного геотермическим градиентом коры, тепломеханической энергии тектонической деформаций, интрузии магматических масс. Участие высокой температуры в динамотермальном метаморфизме обеспечивает глубокие минералогические, а иногда и химические преобразования горных пород. Широко развит в зонах регионального метаморфизма.

Продукты динамометаморфизма (тектониты): милониты, тектонические брекчии трения; условия образования и геологическая обстановка нахождения тектонитов. Эксплозивный метаморфизм и его природа.

 

29. Ультраметаморфизм и его продукты

метаморфический процесс, происходящий в глубоких зонах земной коры и сопровождающийся выплавкой анатектического материала. Составными частями ультраметаморфизма являются анатексис, гранитизация, палингенез и реоморфизм.

 

 

30. Понятие о контактовом метаморфизме. Продукты контактового метаморфизма.

Контактовый метаморфизм - Процесс изменения минерального состава, структуры и текстуры горных пород в результате прогрева со стороны магматического расплава и постмагматических флюидов. Котнактовый метаморфизм проявляется вблизи интрузивных массивов, кристализовавшихся на малых и средних глубинах (до 10 — 12км). На больших глубинах контактовые ореолы сливаются с полями регионально-метаморфических пород и не фиксируются. Контактовому метаморфизму подвергаются также ксенолиты захваченные магматическим расплавом. Мощность контактовых ореолов, составляет обычно несколько десятков, реже - сотен метров, и даже вблизи крупных гранитных батолитов не превышает 2 — 3км.

В результате воздействия алюмосиликатных расплавов на близкие по составу, силикатные или алюмосиликатные осадочные породы (песчаники, алевролиты, аргиллиты, кремнистые сланцы) образуются контактовые роговики. От пород регионального метаморфизма роговики отличаются прежде всего своим геологическим положением — приуроченностью к интрузивным массивом. Если обнаженность территории хорошая, удается наблюдать постепенный переход от контактовых роговиков к их неизмененным аналогам — песчаникам и алевролитам. Кроме того, преобразования, которым подвергается порода при контактовом метаморфизме связаны главным образом с прогревом, приводящем к отжигу, поэтому для пород контактового метаморфизма характерны однородные массивные текстуры, отсутствие сланцеватости, идиоморфизм зерен и отсутствие внутризерновых дислокаций.

Давление при контактовом метаморфизме изменяется в пределах 0-3 кбар, температура — 300—1200С. Экстремально высокие температуры (900—1200С) достигаются только при метаморфизме ксенолитов, со всех сторон окруженных магматическим расплавом.

Очень важную роль играет постмагматический флюид. Наличие значительных контактовых ореолов характерно для интрузий кислого состава, хотя температура кристаллизации у кислых магм существенно ниже чем у основных. Однако основные магмы бедны флюидом, а при чисто кондуктивном переносе тепла от контакта, метаморфизму подвергается только узкая (до нескольких метров мощностью) зона.

Контактовые ореолы могут служить признаком близости не вскрытого интрузивного тела.

Типичными продуктами контактового метаморфизма являются различные роговики. В их составе участвуют такие характерные минералы, как андалузит, кордиерит (в метапелитовых роговиках), брусит, тремолит, актинолит, диопсид, гроссуляр, шпинель, анортит, волластонит (в мраморах), или роговая обманка, пироксены, гранаты (в основных породах).

 

31. Вулканы, строение вулканических аппаратов. Категории и типы вулканов.

 

Вулканами называются конусообразные или куполовидные возвышения над каналами, трубками взрыва и трещинами в земной коре, по которым извергаются из недр газообразный продукты, лава, пепел, обломки горных парод. Проявления вулканизма представляют собой один из наиболее характерных и важных геологических процессов, имеющих огромное значение в истории развития и формирования земной коры

 

В настоящее время на земном шаре выявлено свыше 4тыс. вулканов. К действующим относят вулканы извергающиеся и проявляющие сольфатарную активность (выделение горячих газов и воды) за последние 3500 лет исторического периода. На 1980 год их насчитывали 947.
К потенциально действующим относятся голоценовые вулканы, извергающиеся 3500-13500 лет назад. Их примерно 1343 шт. К условно потухшим вулканам относят не проявляющими активности в голоцене, но сохранившие свои внешние формы (возрастом моложе 100тыс. лет).

 

Строение вулкана

Корни вулкана, т.е его первичный магматический очаг располагается на глубине 60-100км в астеносферном слое. В земной коре на глубине 20-30км находится вторичный магматический очаг, который непосредственно и питает вулкан через жерло. Конус вулкана сложен про- дуктами его извержения. На вершине располагается кратер - чашеобразное углубление, которое иногда заполняется водой. Диаметры кратеров могут быть различны, например у Ключевской сопки - 675м, а у известного вулкана Везувий, погубившего Помпею - 568м. После извержения кратер разрушается и образуется впадина с вертикальными стенками - кальдеры. Диаметр некоторых кальдер достигает многих километров, например кальдера вулкана Аниакчан на Аляске равно 10км.

Иногда на склонах вулканов возникают паразитические, или побочные кратеры, через жерло которых также может извергаться определенное количество лавы.

Наука изучающая вулканы — вулканология, геоморфология.

ТИПЫСуществует 2 основных вида вулканов: центрального и линейного типа.

Вулканы центрального типа - конусообразные или куполообразные возвышенности, сложеные вулканическими извержениями, высотой несколько тысяч метров.

На вершинах чашеобразные углубления - кратеры, которые соединяются с магматическим очагом, который находится на глубине 80 км. и более в верхней мантии, через жерло. Выбрасываемые при извержении обломки и лава наращивают конус. К кратерам часто приурочены озера. При извержении образуются грязевые потоки, приводящие к катастрофическим разрушениям.

Кратер древнего вулкана, разрушенного в результате экзогенных процессов, внутри которого располагается несколько более молодых конусов, до 2 - 3 десятков км. в поперечнике, называется кальдерой. По генезису различают кальдеры:

взрывные, образующиеся при извержениях взрывного типа;
кальдеры обрушения или проседания, вследствие обрушения кровли подземной полости, откуда была внезапно выброшена эмульсия магмы и частичного оседания низвергнутой лавы;
эрозионные - образованные в результате экзогенных процессов в длительный период покоя вулкана;
смешанные - в формировании их участвовали как эндогенные так и экзогенные процессы.
Вулканы линейного или трещинного типа - имеют протяженные подводящие каналы (см. рис.).
А- вулкан трещинного типа;
Б- вулкан щитового центрального типа.
Как правило изливается базальтовая жидкая лава, образуя покровы. Вдоль трещин образуются валы разбрызгивания (лавы), плоские конусы, лавовые поля.

32. Землетрясения, причины возникновения землетрясений. Связь сейсмических областей с областями вулканической активности.

 

ЗЕМЛЕТРЯСЕНИЯ, колебания Земли, вызванные внезапными изменениями в состоянии недр планеты. Эти колебания представляют собой упругие волны, распространяющиеся с высокой скоростью в толще горных пород. Наиболее сильные землетрясения иногда ощущаются на расстояниях более 1500 км от очага и могут быть зарегистрированы сейсмографами (специальными высокочувствительными приборами) даже в противоположном полушарии. Район, где зарождаются колебания, называется очагом землетрясения, а его проекция на поверхность Земли – эпицентром землетрясения. Очаги большей части землетрясений лежат в земной коре на глубинах не более 16 км, однако в некоторых районах глубины очагов достигают 700 км. Ежедневно происходят тысячи землетрясений, но лишь немногие из них ощущаются человеком.

Упоминания о землетрясениях встречаются в Библии, в трактатах античных ученых – Геродота, Плиния и Ливия, а также в древних китайских и японских письменных источниках.

 

Причины землетрясений. Хотя уже с давних времен ведутся многочисленные исследования, нельзя сказать, что причины возникновения землетрясений полностью изучены. По характеру процессов в их очагах выделяют несколько типов землетрясений, основными из которых являются тектонические, вулканические и техногенные.

Тектонические землетрясения возникают вследствие внезапного снятия напряжения, например, при подвижках по разлому в земной коре (исследования последних лет показывают, что причиной глубоких землетрясений могут быть и фазовые переходы в мантии Земли, происходящие при определенных температурах и давлениях). Иногда глубинные разломы выходят на поверхность. Во время катастрофического землетрясения в Сан-Франциско 18 апреля 1906 общая протяженность поверхностных разрывов в зоне разлома Сан-Андреас составила более 430 км, максимальное горизонтальное смещение – 6 м. Максимальная зарегистрированная величина сейсмогенных смещений по разлому 15 м.

Вулканические землетрясения происходят вследствие резких перемещений магматического расплава в недрах Земли или в результате возникновения разрывов под влиянием этих перемещений.

Техногенные землетрясения могут быть вызваны подземными ядерными испытаниями, заполнением водохранилищ, добычей нефти и газа методом нагнетания жидкости в скважины, взрывными работами при добыче полезных ископаемых и пр. Менее сильные землетрясения происходят при обвале сводов пещер или горных выработок.

Связь землетрясений с горообразованием. Как вулканические явления, так и явления сейсмические, или землетрясения, современная наука ставит в связь с процессами горообразования и видит в них спутников этих процессов. Мы знаем уже, что горообразование начинается с опускания известного участка земной коры, для чего необходима неравномерная нагрузка в двух соседних областях литосферы. Перенос материалов с одного участка на другой может длиться столетия, и до поры до-времени литосфера все-таки будет сохранять равновесие; но рано или поздно равновесие нарушится, и произ



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: