Представление пространства решений стандартной задачи линейного программирования.





Математическое описание.

 

Использование графического способа удобно только при решении задач ЛП с двумя переменными . При большем числе переменных необходимо применение алгебраического аппарата . В данной главе рассматривается общий метод решения задач ЛП , называемый симплекс-методом .

Информация , которую можно получить с помощью симплекс-метода , не ограничивается лишь оптимальными значениями переменных .

Процесс решения задачи линейного программирования носит итерационный характер : однотипные вычислительные процедуры в определенной последовательности повторяются до тех пор , пока не будет получено оптимальное решение . Процедуры , реализуемые в рамках симплекс-метода , требуют применения вычислительных машин - мощного средства решения задач линейного программирования .

Симлекс-метод - это характерный пример итерационных вычислений , используемых при решении большинства оптимизационных задач .

Правая и левая части ограничений линейной модели могут быть связаны знаками <= , = и => . Кроме того , переменные , фигурирующие в задачах ЛП, могут быть неотрицательными или не иметь ограничения в знаке . Для построения общего метода решения задач ЛП соответствующие модели должны быть представлены в некоторой форме, которую назовем стандартной формой линейных оптимизационных моделей. При стандартной форме линейной модели.

1. Все ограничения записываются в виде равенств с неотрицательной правой частью;

2. Значения всех переменных модели неотрицательны;

3. Целевая функция подлежит максимизации или минимизации.

Покажем, каким образом любую линейную модель можно привести к стандартной.

 

Ограничения

1.Исходное ограничение, записанное в виде неравенства типа <= ( =>), можно представить в виде равенства , прибавляя остаточную переменную к левой части ограничения (вычитая избыточную переменную из левой части).

Например , в левую часть исходного ограничения

5X1 + 100X2 <= 1000

вводится остаточная переменная S1 > 0 , в результате чего исходное неравенство обращается в равенство

5X1 + 100X2 + S1 = 1000 , S1 => 0

Если исходное ограничение определяет расход некоторого ресурса , переменную S1 следует интерпретировать как остаток , или неиспользованную часть , данного ресурса .

Рассмотрим исходное ограничение другого типа:

X1 - 2X2 => 0

Так как левая часть этого ограничения не может быть меньше правой , для обращения исходного неравенства в равенство вычтем из его левой части избыточную переменную S2 > 0 . В результате получим

X1 - 2X2 - S2 = 0 , S2 => 0

2.Правую часть равенства всегда можно сделать неотрицательной , умножая оби части на-1 .

Например равенство X1 - 2X2 - S2 = 0 эквивалентно равенству - X1 + 2X2 + S2 = 0

3.Знак неравенства изменяется на противоположный при умножении обеих частей на -1.

Например можно вместо 2 < 4 записать - 2 > - 4 , неравенство X1 - 2X2 <= 0 заменить на - X1 + 2X2 => 0

 

Переменные

 

Любую переменную Yi , не имеющую ограничение в знаке , можно представить как разность двух неотрицательных переменных :

Yi=Yi’-Yi’’, где Yi’,Yi’’=>0.

Такую подстановку следует использовать во всех ограничениях , которые содержат исходную переменную Yi , а также в выражении для целевой функции .

Обычно находят решение задачи ЛП, в котором фигурируют переменные Yi’ и Yi’’ , а затем с помощью обратной подстановки определяют величину Yi . Важная особенность переменных Yi’ и Yi’’ состоит в том , что при любом допустимом решении только одна из этих переменных может принимать положительное значение , т.е. если Yi’>0 , то Yi’’=0, и наоборот . Это позволяет рассматривать Yi’ как остаточную переменную , а Yi’’ - как избыточную переменную , причем лишь одна из этих переменных может принимать положительное значение . Указанная закономерность широко используется в целевом программировании и фактически является предпосылкой для использования соответствующих преобразований.

 

Целевая функция

Целевая функция линейной оптимизационной модели , представлена в стандартной форме , может подлежать как максимизации , так и минимизации . В некоторых случаях оказывается полезным изменить исходную целевую функцию .

Максимизация некоторой функции эквивалентна минимизации той же функции , взятой с противоположным знаком , и наоборот . Например максимизация функции

Z = X1 + 25X2

эквивалентна минимизации функции

( -Z ) = -X1 - 25X2

Эквивалентность означает , что при одной и той же совокупности ограничений оптимальные значения X1 , X2 , в обоих случаях будут одинаковы . Отличие заключается только в том , что при одинаковых числовых значениях целевых функций их знаки будут противоположны.

 

Симплекс-метод.

В вычислительной схеме симплекс-метода реализуется упорядоченный процесс , при котором , начиная с некоторой исходной допустимой угловой точки ( обычно начало координат ) , осуществляются последовательные переходы от одной допустимой экстремальной точки к другой до тех пор , пока не будет найдена точка , соответствующая оптимальному решению.

Исходной точкой алгоритма является начало координат. Решение, соответствующее этой точке, обычно называют начальным решением . От исходной точки осуществляется переход к некоторой смежной угловой точке.

Выбор каждой последующей экстремальной точки при использовании симплекс-метода определяется следующими двумя правилами.

1.Каждая последующая угловая точка должна быть смежной с предыдущей. Этот переход осуществляется по границам ( ребрам ) пространства решений.

2.Обратный переход к предшествующей экстремальной точке не может производиться.

Таким образом , отыскание оптимального решения начинается с некоторой допустимой угловой точки , и все переходы осуществляются только к смежным точкам , причем перед новым переходом каждая из полученных точек проверяется на оптимальность .

Определим пространство решений и угловые точки алгебраически. Требуемые соотношения устанавливаются из указанного в таблице соответствия геометрических и алгебраических определений.

 

Геометрическое определение Алгебраическое определение (симплекс метод)
Пространство решений Ограничения модели стандартной формы
Угловые точки Базисное решение задачи в стандартной форме

Представление пространства решений стандартной задачи линейного программирования.

 

Линейная модель , построенная для нашей задачи и приведенная к стандартной форме , имеет следующий вид :

Максимизировать

Z = X1 + 25X2 + 0S1 + 0S2

 

При ограничениях

5X1 + 100X2 + S1 = 1000

- X1 + 2X2 + S2 = 0

X1=>0 , X2=>0 , S1=>0 , S2=>0

Каждую точку пространства решений данной задачи можно определить с помощью переменных X1 , X2 , S1 и S2 , фигурирующими в модели стандартной формы. При S1 = 0 и S2 = 0 ограничения модели эквивалентны равенствам , которые представляются соответствующими ребрами пространства решений . Увеличение переменных S1 и S2 будет соответствовать смещению допустимых точек с границ пространства решений в его внутреннюю область. Переменные X1 , X2 , S1 и S2 , ассоциированные с экстремальными точками А , В , и С можно упорядочить , исходя из того , какое значение ( нулевое или ненулевое ) имеет данная переменная в экстремальной точке .

 

Экстремальная точка Нулевые переменные Ненулевые переменные
А S2 , X2 S1 , X1
В S1 , X2 S2 , X1
С S1 , S2 X1 , X2

 

Анализируя таблицу , легко заметить две закономерности:

1. Стандартная модель содержит два уравнения и четыре неизвестных , поэтому в каждой из экстремальных точек две ( = 4 - 2 ) переменные должны иметь нулевые значения .

2. Смежные экстремальные точки отличаются только одной переменной в каждой группе ( нулевых и ненулевых переменных ), Первая закономерность свидетельствует о возможности определения экстремальных точек алгебраическим способом путем приравнивания нулю такого количества переменных, которое равно разности между количеством неизвестных и числом уравнений. В этом состоит сущность свойства однозначности экстремальных точек . Каждой не экстремальной точке соответствует не более одной нулевой переменной . Так , любая точка внутренней области пространства решений вообще не имеет ни одной нулевой переменной, а любая не экстремальная точка , лежащая на границе, всегда имеет лишь одну нулевую переменную.

Свойство однозначности экстремальных точек позволяет определить их алгебраическим методом. Будем считать , что линейная модель стандартной формы содержит т уравнений и п ( т <= п ) неизвестных ( правые части ограничений — неотрицательные ) . Тогда все допустимые экстремальные точки определяются как все однозначные неотрицательные решения системы m уравнений , в которых п — m переменных равны нулю.

Однозначные решения такой системы уравнений, получаемые путем приравнивания к нулю ( п — т ) переменных , называются базисными решениями . Если базисное решение удовлетворяет требованию неотрицательности правых частей , оно называется
допустимым базисным решением. Переменные , имеющие нулевое значение , называются небазисными переменными , остальные — базисными переменными.

Из вышеизложенного следует , что при реализации симплекс метода алгебраическое определение базисных решений соответствует идентификации экстремальных точек , осуществляемой при геометрическом представлении пространства решений . Таким об-
разом , максимальное число итераций при использовании симплекс метода равно максимальному числу базисных решений задачи ЛП, представленной в стандартной форме . Это означает , что количество итерационных процедур симплекс-метода не превышает

Cпт= n! / [ ( n - m )!m! ]

Вторая из ранее отмеченных закономерностей оказывается весьма полезной для построения вычислительных процедур симплекс-метода , при реализации которого осуществляется последовательный переход от одной экстремальной точки к другой, смежной с ней. Так как смежные экстремальные точки отличаются только одной переменной, можно определить каждую последующую (смежную) экстремальную точку путем замены одной из текущих небазисных ( нулевых ) переменных текущей базисной переменной. В нашем случае получено решение , соответствующее точке А , откуда следует осуществить переход в точку В . Для этого нужно увеличивать небазисную переменную X2 от исходного нулевого значения до значения , соответствующего точке В. В точке B переменная S1 автоматически обращается в нуль и , следовательно , становится небазисной переменной . Таким образом , между множеством небазисных и множеством базисных переменных происходит взаимообмен переменными X2 и S1 . Этот процесс можно наглядно представить в виде следующей таблицы.

 

Экстремальная точка Нулевые переменные Ненулевые переменные
А S2 , X2 S1 , X1
В S1 , X2 S2 , X1

 

Применяя аналогичную процедуру ко всем экстремальным точкам, можно убедиться в том, что любую последующую экстремальную точку всегда можно определить путем взаимной замены по одной переменной в составе базисных и небазисных переменных (предыдущей смежной точки). Этот фактор существенно упрощает реализацию вычислительных процедур симплекс-метода.

Рассмотренный процесс взаимной замены переменных приводит к необходимости введения двух новых терминов. Включаемой переменной называется небазисная в данный момент переменная, которая будет включена в множество базисных переменных на следующей итерации (при переходе к смежной экстремальной точке). Исключаемая переменная — это та базисная переменная, которая на следующей итерации подлежит исключению из множества базисных переменных.

 





Читайте также:
Задачи и функции аптечной организации: Аптеки классифицируют на обслуживающие население; они могут быть...
Социальные науки, их классификация: Общество настолько сложный объект, что...
ТЕМА: Оборудование профилактического кабинета: При создании кабинетов профилактики в организованных...
Русский классицизм в XIX веке: Художественная культура XIX в. развивалась под воздействием ...

Рекомендуемые страницы:



Вам нужно быстро и легко написать вашу работу? Тогда вам сюда...

Поиск по сайту

©2015-2021 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Мы поможем в написании ваших работ! Мы поможем в написании ваших работ! Мы поможем в написании ваших работ!
Обратная связь
0.041 с.