Видеокарта (видеоадаптер)




    Видеокарта располагается в системном блоке и представляет собой маленький графический компьютер со своими процессором и памятью. Видеокарта (другие названия: графическая карта, видеоадаптер) управляет работой монитора, освобождая процессор от построения кадров изображения. От качества видеокарты зависит скорость обработки видеоинформации, чёткость изображения, число цветов на экране и разрешение, в котором будет работать монитор.

Монитор

    В XIX веке во Франции возникла техника живописи, которую назвали пуантилизмом: рисунок составлялся из разноцветных точек, наносимых кистью на холст. Подобный принцип используется и в компьютерах.

Растровый принцип вывода изображений

  Точки на экране компьютера выстроены в ровные ряды. Совокупность точечных строк образуют графическую сетку или растр. Одна точка носит название пиксель (picture element). Чем гуще сетка пикселей на экране, тем лучше качество изображения.    

Размер графической сетки (растра)

    Размер графической сетки обычно представляется в форме произведения числа точек в горизонтальной строке на число строк. Размер графической сетки называется разрешением экрана. Разрешение обычно указывают в виде двух величин через знак умножения. Первая величина задает число столбцов пиксельной матрицы, вторая — число строк. На современных мониторах используются такие размеры графической сетки:
  • 640 х 480
  • 1024 х 768
  • 1280 х 1024
Размер экрана монитора принято измерять по длине диагонали в дюймах. Один дюйм — это 2,54 сантиметра. Дюймы обозначают двойным штрихом вверху. Для работы с компьютерными рисунками подойдёт монитор с диагональю 15", но профессионалы используют мониторы с диагоналями 17", 19", 21" и даже больше.

Виды мониторов

  Существуют мониторы, основанные на разных физических принципах. На экране электронно-лучевого монитора изображение выводится по “строчкам”, которые рисует электронный луч, пробегая по экрану. Достоинства электронно-лучевого монитора:
  • хорошее качество изображения;
  • сравнительно невысокая цена.
Недостатки электронно-лучевого монитора:
  • Вредное воздействие на здоровье человека.
 

 

  Экран жидкокристаллического монитора представляет собой матрицу, каждый элемент которой — жидкий кристалл (как в электронных часах). Кристаллы освещаются специальными лампами. Под действием электрических сигналов кристаллы меняют свои оптические свойства, моделируя на экране элементы изображения. Достоинства жидкокристаллического монитора:
  • отсутствие вредного излучения;
  • занимает мало места;
  • потребляет мало электроэнергии.
Недостатки жидкокристаллического монитора:
  • высокая стоимость;
  • не очень качественная цветопередача.
 
  Мышь - наиболее распространенный тип манипуляторов. Манипуляторы осуществляют непосредственный ввод информации, указывая курсором на экране дисплея команду или место ввода данных. Компьютерная мышь появилась в 1964 году. Её изобрел Дуглас Карл Энгельбарт из Стэнфордского исследовательского института. Это была небольшая деревянная коробочка с двумя дисками. Один из дисков поворачивался, когда устройство двигали вперед и назад, второй отвечал за движение мыши вправо и влево. Энгельбарт говорит, что назвал устройство мышью из-за его небольшого размера и провода, похожего на хвост. В корпусе современной механической мыши установлены кнопки для выполнения действий и шарик для ее перемещения по коврику. Качество мыши определяется ее разрешающей способностью, которая измеряется числом точек на дюйм - dpi (dot per inch). Эта характеристика определяет, насколько точно курсор будет передвигаться по экрану. Для мышей среднего класса разрешение составляет 400-800 dpi. Мыши различаются: - по способу считывания информации (механические, оптико-механические, оптические); - количеству кнопок (2- и 3-кнопочные мыши); - способу соединения (проводные и беспроводные мыши). Установка колесика между двумя традиционными кнопками мыши обеспечивает перемещение по документу без использования экранных линеек прокрутки. Первые беспроводные мыши появились в середине 90-х годов. Беспроводные мыши используют для передачи информации инфракрасный луч или радиосигнал. Первые оптические мыши работали на принципе отражения света, исходящего от одного светодиода, от специальной подложки с координатной сеткой. Технология современных оптических мышей была разработана Agilent Technologies в конце 1999 г. Теперь в качестве приемника отраженного света используется ПЗС-матрица, можно сказать, миниатюрная видеокамера, передающая в цифровой процессор изображение освещаемого источником света участка подстилающей поверхности. Мышь оснащена небольшим красным светодиодом, который подсвечивает поверхность. Специализированный процессор, находящийся внутри мыши, имеет производительность примерно 18 миллионов операций в секунду. Он выделяет отдельные участки изображения и определяет их перемещение относительно предыдущего снимка. Компьютер передвигает курсор на экране в соответствии с информацией, полученной от мыши. Благодаря большой частоте опроса движения курсора выглядят плавными. Такая мышь незаменима при работе с графическим приложениями. Она не требует специального коврика. Не нужно проводить гигиеническую протирку коврика, шарика мыши и роликов.
  Графический планшет,дигитайзер, используется для ввода в компьютер чертежей или рисунков. Изображение преобразуется в цифровые данные. Условия создания изображения приближены к реальным, достаточно специальным пером сделать рисунок на специальной поверхности. Результаты работы воспроизводятся на экране монитора и в случае необходимости могут быть распечатаны на бумаге. Дигитайзерами обычно пользуются архитекторы и дизайнеры. Перо является источником сигнала, который принимает антенна, находящаяся внутри планшета. Она представляет собой проволочную сетку с шагом 3-6 мм или аналогичную печатную плату. Антенна принимает сигнал и определяет положение манипулятора, а также другие данные. Физический предел разрешения планшета определяется шагом сетки. Погрешность современных графических планшетов не более 0,1 мм. Сейчас планшеты стали весьма популярны в связи с бурным развитием Интернета и популяризацией электронных подписей для использования их в различных операциях. На новый уровень вышли программы проектирования, где без графических планшетов приходится весьма тяжело.  

Принтеры

Принтеры в зависимости от порядка формирования изображения поразделяются на последовательные, строчные и страничные. Принадлежность принтера к той или иной группе зависит от того, формирует ли он на бумаге символ за символом или сразу всю строку, а то и целую страницу. По физическому принципу действия принтеры делятся на матричные, струйные и лазерные. Матричный принтер имеет печатающую головку, представляющую собой матрицу из отдельных иголочек. Таким образом, на бумаге образуются символы, состоящие из точек-отпечатков, оставляемых ударами иголочек по красящей ленте. В зависимости от конструкции печатающая головка матричного принтера может иметь 9, 18 иголок или 24 иголки. Печатающие головки струйных принтеров вместо иголок содержат тоненькие трубочки - сопла, через которые на бумагу выбрасываются капельки чернил. Печатающая головка струйного принтера содержит от 12 до 64 сопел, диаметры которых тоньше человеческого волоса. Известно несколько принципов действия струйных печатающих головок. В одной из конструкций на входном конце каждого сопла расположен маленький резервуар с чернилами. Позади резервуара располагается нагреватель (тонкопленочный резистор). Когда резистор нагревается проходящим по нему током до температуры 500 градусов, окружающие его чернила вскипают, образуя пузырёк пара. Этот расширяющийся пузырек выталкивает из сопла капли чернил диметром 50...85 мкм со скоростью около 700 км/час. В другой конструкции печатающей головки источником давления служит мембрана, приводимая в движение пьезоэлектрическим способом. В матричных и струйных принтерах электромеханичекие устройства перемещают печатающую головку и бумагу так, чтобы печать происходила в нужном месте. В отличие от матричных в струйных принтерах пишущее устройство не находится в постоянном соприкосновении с твёрдой поверхностью, а потому изнашивается не скоро и работает практически бесшумно. Важнейшей особенностью струйной печати является возможность создания высококачественного цветного изображения. В лазерных принтерах используется электрографический принцип создания изображения. Процесс печати включает в себя содание невидимого рельефа электростатического потенциала в слое полупроводника с последующей его визуализацией. Визуализация осуществляется с помощью частиц сухого порошка - тонера, наносимого на бумагу. Тонер представляет собой частички железа, покрытые пластиком. Наиболее важными частями лазерного принтера являются полупроводниковый барабан, лазер и прецизионная оптико-механическая система, перемещающая луч. Лазер генерирует тонкий световой луч, который, отражаясь от вращающегося зеркала, формирует электронное изображение на светочувствительном полупроводниковом барабане. Принтер, как и монитор, является устройством вывода. Только монитор выводит информацию на экран, а принтер — на бумагу. Принтеры в зависимости от порядка формирования изображения поразделяются на последовательные, строчные и страничные. Принадлежность принтера к той или иной группе зависит от того, формирует ли он на бумаге символ за символом или сразу всю строку, а то и целую страницу. По физическому принципу действия принтеры делятся на матричные, струйные и лазерные. Поверхности барабана предварительно сообщается некоторый статический заряд. Для получения изображения на барабане лазер должен включаться и выключаться, что обеспечивается схемой управления. Вращающееся зеркало служит для разворота луча лазера в строку, формируемую на поверхности барабана. Поворот барабана на новую строку осуществляет прецизионный шаговый двигатель. Это смещение определяет разрешающую способность принтера и может составлять, например, 1/300, 1/600 или 1/1200 часть дюйма. Процесс развертки изображения на барабане во многом напоминает построение изображения на экране монитора (создание растра). Когда луч лазера попадает на предварительно заряженный барабан, заряд "стекает" с освещенной поверхности. Таким образом, освещаемые и неосвещаемые лазером участки барабана имеют разный заряд. В результате сканирования всей поверхности полупроводникового барабана на нем создается скрытое (электронное, невидимое для человека) изображение. На следующем этапе работы принтера происходит проявление изображения, то есть превращение скрытого электронного изображения в видимое изображение. Заряженные частицы тонера притягиваются только к тем местам барабана, которые имеют противоположный заряд по отношению к заряду тонера. Когда видимое изображение на барабане построено, и он покрыт тонером в соответствии с оригиналом, подаваемый лист бумаги заряжается таким образом, что тонер с барабана притягивается к бумаге. Прилипший порошок закрепляется на бумаге за счет нагрева частиц тонера до температуры плавления. Кроме лазерных принтеров существуют светодиодные принтеры, которые получили своё название из-за того, что полупроводниковый лазер в них заменен линейкой светодиодов. В этом случае не требуется сложная механическая система вращения зеркала. Изображение одной строки на полупроводниковом барабане формируется одновременно.
Характеристики Тип принтера
Матричный Струйный Лазерный
Разрешающая способность, dpi 60...240 300...720 300...1200
Производительность (листов А4 в минуту)   1...8 4...16


Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-02 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: