Строение атмосферы и характеристика отдельных оболочек




Физическое состояние атмосферы определяется погодой и климатом. Основные параметры атмосферы: плотность воздуха, давление, температура и состав. С увеличением высоты плотность воздуха и атмосферное давление уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное строение атмосферы характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха. В зависимости от температуры в атмосфере различают следующие основные слои: тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т. п.

Тропосфера

Тропосфера — нижний, наиболее изученный слой атмосферы, высотой в полярных областях 8—10 км, в умеренных широтах до 10—12 км, на экваторе — 16—18 км. В тропосфере сосредоточено примерно 80—90% всей массы атмосферы и почти все водяные пары. При подъёме через каждые 100 м температура в тропосфере понижается в среднем на 0,65° и достигает 220 К (−53°C) в верхней части. Этот верхний слой тропосферы называют тропопаузой.

Стратосфера Стратосфера — слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от −56,5 до 0,8°С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (около 0°С), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Именно в стратосфере располагается слой озоносферы («озоновый слой») (на высоте от 15—20 до 55—60 км), который определяет верхний предел жизни в биосфере. Важный компонент стратосферы и мезосферы — О3, образующийся в результате фотохимических реакций наиболее интенсивно на высоте ~ 30 км. Общая масса О3 составила бы при нормальном давлении слой толщиной 1,7—4,0 мм, но и этого достаточно для поглощения губительного для жизни УФ-излучения Солнца. Разрушение О3 происходит при его взаимодействии со свободными радикалами, NO, галогенсодержащими соединениями (в т. ч. «фреонами»).

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180—200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц, и др. свечений.

В стратосфере и более высоких слоях под воздействия солнечной радиации молекулы газов диссоциируют — на атомы (выше 80 км диссоциируют СО2 и Н2, выше 150 км — О2, выше 300 км — Н2). На высоте 100—400 км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О+2, О2, N+2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы — ОН•, НО•2 и др.

В стратосфере почти нет водяного пара.

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура воздуха до высоты 75—85 км понижается до −88°С. Верхней границей мезосферы является мезопауза.

Термосфера

Термосфера (другое название — ионосфера) — слой атмосферы, следующий за мезосферой, — начинается на высоте 80—90 км и простирается до 800 км. Температура воздуха в термосфере быстро и неуклонно возрастает и достигает нескольких сотен и даже тысяч градусов.

Экзосфера

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 800 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц вмежпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0°С в стратосфере до −110°С в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200—250 км соответствует температуре ~1500°С. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000—3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80% массы атмосферы, на долю стратосферы — около 20%; масса мезосферы — не более 0,3%, термосферы — менее 0,05% от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы называемая гомосферой. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа — 40 мм рт. ст., а паров воды −47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным — около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19—20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека «космос» начинается уже на высоте 15—19 км.

Плотные слои воздуха — тропосфера и стратосфера — защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация — первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на все большую высоту над поверхностью Земли постепенно ослабляются, а затем и полностью исчезают такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60—90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100—130 км знакомые каждому лётчику понятия числа М ' и звукового барьера теряют свой смысл, хотя при больших скоростях полёта там ещё можно применить аэродинамическое крыло.

На высотах же 180—200 км начинается сфера чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы. Если при таком полёте развивается центробежная сила, равная силе тяжести на данной высоте, то летательный аппарат становится искусственным спутником Земли.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства — способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, — с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является радиационное излучение.

 

№30 Облака. Классификация облаков

Облака́ — взвешенные в атмосфере продукты конденсации водяного пара, видимые на небе с поверхности земли.

Облака состоят из мельчайших капель воды и/или кристаллов льда (называемых облачными элементами). Капельные облачные элементы наблюдаются при температуре воздуха в облаке выше −10 °C; от −10 до −15 °C облака имеют смешанный состав (капли и кристаллы), а при температуре в облаке ниже −15 °C — кристаллические.

При укрупнении облачных элементов и возрастании их скорости падения, они выпадают из облаков в виде осадков. Как правило, осадки выпадают из облаков, которые хотя бы в некотором слое имеют смешанный состав (кучево-дождевые, слоисто-дождевые, высоко-слоистые). Слабые моросящие осадки (в виде мороси, снежных зёрен или слабого мелкого снега) могут выпадать из однородных по составу облаков (капельных или кристаллических) — слоистых, слоисто-кучевых.

Кроме всего прочего, облака — известный лирический образ, используемый многими поэтами (Державин, Пушкин) в своих произведениях, писатели часто обращаются к этому образу, если требуется описать нечто высокое, мягкое или недосягаемое. Они ассоциируются с покоем, мягкостью и безмятежностью. Облака часто олицетворяют, придавая им мягкие черты характера.

Обычно облака наблюдаются в тропосфере. Тропосферные облака подразделяются на виды, разновидности и по дополнительным признакам в соответствии с международной классификацией облаков. Изредка наблюдаются другие виды облаков: перламутровые облака (на высоте 20-25 км) и серебристые облака (на высоте 70-80 км).

Перистые

Состоят из отдельных перистообразных элементов в виде тонких белых нитей или белых (или в большей части белых) клочьев и вытянутых гряд. Имеют волокнистую структуру и/или шелковистый блеск. Наблюдаются в верхней тропосфере, иногда на высотах тропопаузы или непосредственно под нею (в средних широтах их основания чаще всего лежат на высотах 6-8 км, втропических от 6 до 18 км, в полярных от 3 до 8 км). Видимость внутри облака — 150—500 м. Построены из ледяных кристаллов, достаточно крупных для того, чтобы иметь заметную скорость падения; поэтому они имеют значительное вертикальное протяжение (от сотен метров до нескольких километров). Однако сдвиг ветра и различия в размерах кристаллов приводят к тому, что нити перистых облаков скошены и искривлены. Хорошо выраженных явлений гало перистые облака обычно не дают вследствие своей расчленённости и малости отдельных облачных образований. Данные облака характерны для переднего края облачной системы теплого фронта или фронта окклюзии, связанной с восходящим скольжением. Они часто развиваются также вантициклонической обстановке, иногда являются частями или остатками ледяных вершин (наковален) кучево-дождевых облаков.

Различаются виды: нитевидные когтевидные башенкообразные плотные, хлопьевидные и разновидности: перепутанные радиальные хребтовидные), двойные

Иногда к этому роду облаков, наряду с описанными облаками, относят также перисто-слоистые и перисто-кучевые облака.

Перисто-кучевые

Их часто называют «барашки». Очень высокие небольшие шаровидные облака, вытянутые в линии. Похожи на спины скумбрий или рябь на прибрежном песке. Высота нижней границы — 6-8 км, вертикальная протяжённость — до 1 км, видимость внутри — 5,5-10 км. Являются признаком повышения температуры. Нередко наблюдаются вместе с перистыми или перисто-слоистыми облаками. Часто являются предшественниками шторма. При этих облаках наблюдается т. н. «иридизация» — радужное окрашивание края облаков

Перисто-слоистые

Парусоподобные облака верхнего яруса, состоящие из кристалликов льда. Имеют вид однородной, белесоватой пелены. Высота нижней кромки — 6-8 км, вертикальная протяжённость колеблется от нескольких сотен метров до нескольких километров (2-6 и более), видимость внутри облака — 50-200 м. Перисто-слоистые облака относительно прозрачны, так что солнце или луна могут быть отчётливо видны сквозь них. Эти облака верхнего яруса обычно образуются когда обширные пласты воздуха поднимаются вверх за счёт многоуровневой конвергенции.

Перисто-слоистые облака характеризуются тем, что часто дают явления гало вокруг солнца или луны. Гало являются результатом преломления света кристаллами льда, из которых состоит облако. Перисто-слоистые облака, однако, имеют склонность уплотняться при приближении тёплого фронта, что означает увеличение образования кристаллов льда. Вследствие этого гало постепенно исчезает, и солнце (или луна) становятся менее заметными.

Высоко-кучевые

Высоко-кучевые облака (Altocumulus, Ac) — типичная облачность для теплого сезона. Серые, белые, или синеватого цвета облака в виде волн и гряд, состоящих из хлопьев и пластин, разделённых просветами. Высота нижней границы — 2-6 км, вертикальная протяжённость — до нескольких сотен метров, видимость внутри облака — 50-80 м. Располагаются, как правило, над местами, обращёнными к солнцу. Иногда достигают стадии мощных кучевых облаков. Высоко-кучевые облака обычно возникают в результате поднятия теплых воздушных масс, а также при наступлении холодного фронта, который вытесняет теплый воздух вверх. Поэтому наличие высоко-кучевых облаков теплым и влажным летним утром предвещает скорое появление грозовых облаков или перемену погоды

Высоко-слоистые

Имеют вид однородной или слабовыраженной волнистой пелены серого или синеватого цвета, Солнце и Луна, обычно, просвечивают, но слабо. Высота нижней границы — 3-5 км, вертикальная протяжённость — 1-4 км, видимость в облаках — 25-40 м. Эти облака состоят из ледяных кристаллов, переохлажденных капель воды и снежинок. Высоко-слоистые облака могут приносить обложной дождь или снег.

Слоистые

Слоистые облака образуют однородный слой, сходный с туманом, но расположенный на некоторой высоте (чаще всего от 100 до 400 м, иногда 30-90 м). Обычно они закрывают всё небо, но иногда могут наблюдаться в виде разорванных облачных масс. Нижний край этих облаков может опускаться очень низко; иногда они сливаются с наземным туманом. Толщина их невелика — десятки и сотни метров. Иногда из этих облаков выпадают осадки, чаще всего в виде снежных зёрен или мороси.

Слоисто-кучевые

Серые облака, состоящие из крупных гряд, волн, пластин, разделенных просветами или сливающимися в сплошной серый волнистый покров. Состоят преимущественно из капель воды. Высота нижней границы обычно в пределах от 500 до 1800 м. Толщина слоя от 200 до 800 м. Солнце и луна могут просвечивать только сквозь тонкие края облаков. Осадки, как правило, не выпадают. Из слоисто-кучевых не просвечивающих облаков могут выпадать слабые непродолжительные осадки.

Кучевые облака

Кучевые облака — плотные, днём ярко-белые облака со значительным вертикальным развитием. Высота нижней границы обычно от 800 до 1500 м, иногда 2—3 км и более. Толщина 1-2 км, иногда 3-5 км. Верхние части кучевых облаков имеют вид куполов или башен с округлыми очертаниями. Обычно кучевые облака возникают как облака конвекции в холодных или нейтральных воздушных массах.

Слоисто-дождевые

Слоисто-дождевые облака тёмно-серые, в виде сплошного слоя. При осадках он кажется однородным, в перерывах между выпадением осадков заметна некая неоднородность и даже некоторая волнистость слоя. От слоистых облаков отличаются более тёмным и синеватым цветом, неоднородностью строения и наличием обложных осадков. Высота нижней границы — от 100 до 1900 м, толщина — до нескольких километров.

Кучево-дождевые

Кучево-дождевые — мощные и плотные облака с сильным вертикальным развитием (несколько километров, иногда до высоты 12—14 км), дающие обильные ливневые осадки с мощным градом и грозовыми явлениями. Кучево-дождевые облака развиваются из мощных кучевых облаков. Они могут образовывать линию, которая называется линией шквалов. Нижние уровни кучево-дождевых облаков состоят в основном из капелек воды, в то время как на более высоких уровнях, где температуры намного ниже 0 °C, преобладают кристаллики льда. Высота нижней границы обычно ниже 2000 м, то есть в нижнем ярусе тропосферы.

Серебристые облака

Серебристые облака формируются в верхних слоях атмосферы. Эти облака находятся на высоте приблизительно 80 км. Их можно наблюдать непосредственно после заката или перед восходом Солнца. Серебристые облака были обнаружены только в XX веке.

Перламутровые

Перламутровые облака образуются в небе на больших высотах (около 20-30 км) и состоящие, по-видимому, из кристалликов льда или переохлаждённых капель воды.

Вымеобразные

Вымеобразные или трубчатые облака — облака, основание которых имеет специфическую ячеистую или сумчатую форму. Встречаются редко, преимущественно в тропических широтах, и связаны с образованием тропических циклонов.

Лентикулярные

Лентикулярные (линзовидные) облака образуются на гребнях воздушных волн или между двумя слоями воздуха. Характерной особенностью этих облаков является то, что они не двигаются, сколь бы ни был силён ветер. Поток воздуха, проносящийся над земной поверхностью, обтекает препятствия, и при этом образуются воздушные волны. Обычно зависают с подветренной стороны горных хребтов, за хребтами и отдельными вершинами на высоте от двух до пятнадцати километров

Пирокумулятивные

Пирокумулятивные облака или пирокумулюс — конвективные (кучевые или кучево-дождевые) облака, вызванные пожаром или вулканической активностью. Эти облака получили своё название оттого, что огонь создает конвективные восходящие потоки, которые по мере подъёма при достижении уровня конденсации приводят к образованию облаков — сначала кучевых, а при благоприятных условиях — и кучево-дождевых. В этом случае возможны грозы; удары молнии из этого облака тогда вызывают новые возгорания.

№31 Погода

Пого́да — совокупность значений метеорологических элементов и атмосферных явлений, наблюдаемых в определенный момент времени в той или иной точке пространства. Понятие «Погода» относится к текущему состоянию атмосферы, в противоположность понятию «Климат», которое относится к среднему состоянию атмосферы за длительный период времени. Если нет уточнений, то под термином «Погода» понимают погоду на Земле. Погодные явления протекают в тропосфере(нижней части атмосферы) и в гидросфере.

Выделяют периодические и непериодические изменения погоды. Периодические изменения погоды зависят от суточного и годового вращения Земли. Непериодические обусловлены переносом воздушных масс. Они нарушают нормальный ход метеорологических величин (температура, атмосферное давление, влажность воздуха и т.д.). Несовпадения фазы периодических изменений с характером непериодических приводят к наиболее резким изменениям погоды.

Можно выделить два типа метеорологической информации:

· первичную информацию о текущей погоде, получаемую в результате метеорологических наблюдений.

· информацию о погоде в виде различных сводок, синоптических карт, аэрологических диаграмм, вертикальных разрезов, карт облачности и т. д.

Успешность разрабатываемых прогнозов погоды в значительной степени зависит от качества первичной метеорологической информации.

Обычные погодные явления на Земле — это ветер, облака, атмосферные осадки (дождь, снег, град и т. д.), туманы, грозы,пыльные бури и метели. Более редкие явления включают в себя стихийные бедствия, такие как торнадо и ураганы. Почти все погодные явления происходят в тропосфере (нижняя часть атмосферы).

Различия в физических свойствах воздушных масс возникают из-за изменения угла падения солнечных лучей в зависимости от широты и удалённости региона от океанов. Большое различие температур между арктическим и тропическим воздухом является причиной наличия высотных струйных течений. Барические образования в средних широтах, такие как внетропические циклоны, образуются при развитии волн в зоне высотного струйного течения. Поскольку ось Земли наклонена относительно плоскости её орбиты, угол падения солнечных лучей зависит от времени года. В среднем ежегодная температура на поверхности Земли изменяется в пределах ±40 °C. В течение сотен тысяч лет изменение орбиты Земли влияет на количество и распределение солнечной энергии на планете, определяя долгосрочный климат.

Различие температур на поверхности в свою очередь вызывает разность в поле атмосферного давления. Горячая поверхность нагревает находящийся над ней воздух, расширяет его, понижая давление и плотность воздуха. Полученный горизонтальный градиент давления ускоряет воздух в сторону низкого давления, создавая ветер. А вследствие работы эффекта Кориолиса при вращении Земли происходит закручивание потока. Примером простой погодной системы являются прибрежные бризы, а сложной — ячейка Хадлея.

Атмосфера — это сложная система, поэтому незначительные изменения в одной её части могут оказать большое влияние на систему в целом. В истории человечества постоянно были попытки управлять погодой. Доказано, что деятельность людей, такая как сельское хозяйство и промышленность, может в некоторых пределах влиять на погоду. Прогноз погоды — это научно и технически обоснованное предположение о будущем состоянии атмосферы в определённой точке или регионе земного шара.

Изучение погоды на других планетах стало полезным для понимания принципов изменения погоды на Земле. Известный исследовательский объект в Солнечной Системе — Большое красное пятно Юпитера, является антициклоническим штормом, который существует в течение, по крайней мере, 300 лет. Однако погода не ограничена планетарными телами. Корона Солнца постоянно теряется в космос, создавая, по существу, очень тонкую атмосферу во всей Солнечной Системе. Движение частиц, испускаемых Солнцем, называется солнечным ветром.

№32 Климат.

Кли́мат (др.-греч. κλίμα (род. п. κλίματος) — наклон[1]) — многолетний режим погоды, характерный для данной местности в силу её географического положения.

Климат — статистический ансамбль состояний, через который проходит система: гидросфера → литосфера → атмосфера за несколько десятилетий. Под климатом принято понимать усреднённое значение погоды за длительный промежуток времени (порядка нескольких десятилетий) то есть климат — это средняя погода. Таким образом, погода — это мгновенное состояние некоторых характеристик (температура, влажность, атмосферное давление). Отклонение погоды от климатической нормы не может рассматриваться как изменение климата, например, очень холодная зима не говорит о похолодании климата. Для выявления изменений климата нужен значимый тренд характеристик атмосферы за длительный период времени порядка десятка лет. Климатические пояса и типы климата существенно меняются по широте, начиная от экваториальной зоны и заканчивая полярной, но климатические пояса являются не единственным фактором, также важное влияние оказывает близость моря, система циркуляции атмосферы и высота над уровнем моря.

Краткая характеристика климатов России:

· Арктический: t января −24…-30, t лета +2…+5. Осадки — 200—300 мм.

· Субарктический: (до 60 градуса с.ш.). t лета +4…+12. Осадки 200—400 мм.

· Умеренно континентальный: t января −4…-20, t июля +12…+24. Осадки 500—800 мм.

· Континентальный климат: t января −15…-25, t июля +15…+26. Осадки 200—600 мм.

· Резко континентальный: t января −25…-45, t июля +16…+20. Осадки — более 500 мм.

· Муссонный: t января −15…-30, t июля +10…+20. Осадки 600—800. мм

В России и на территории бывшего СССР использовалась классификация типов климата, созданная в 1956 годуизвестным советским климатологом Б. П. Алисовым. Эта классификация учитывает особенности циркуляции атмосферы. Согласно этой классификации выделяется по четыре основных климатических поясов на каждое полушарие Земли: экваториальный, тропический, умеренный и полярный (в северном полушарии — арктический, в южном полушарии — антарктический). Между основными зонами находятся переходные пояса — субэкваториальный пояс, субтропический, субполярных (субарктический и субантарктический). В этих климатических поясах в соответствии с преобладающей циркуляцией воздушных масс можно выделить четыре типа климата: материковый, океанический, климат западных и климат восточных берегов.

Экваториальный пояс

· Экваториальный климат

· Субэкваториальный пояс

· Тропический муссонный климат

· Муссонный климат на тропических плато

· Тропический пояс

· Тропический сухой климат

· Тропический влажный климат

· Субтропический пояс

· Средиземноморский климат

· Субтропический континентальный климат

· Субтропический муссонный климат

· Климат высоких субтропических нагорий

· Субтропический климат океанов

· Умеренный пояс

· Умеренный морской климат

· Умеренно-континентальный климат

· Умеренный континентальный климат

· Умеренный резко континентальный климат

· Умеренный муссонный климат

· Субполярный пояс

· Субарктический климат

· Субантарктический климат

· Полярный пояс: Полярный климат

· Арктический климат

· Антарктический климат

В мире широко распространена классификация климатов, предложенная русским ученым В. Кёппеном (1846—1940). В её основе лежат режим температуры и степень увлажнения. Согласно этой классификации выделяется восемь климатических поясов с одиннадцатью типами климата. Каждый тип имеет точные параметры значенийтемпературы, количества зимних и летних осадков.

Также в климатологии используются следующие понятия, связанные с характеристикой климата:

· Континентальный климат

· Морской климат

· Высокогорный климат

· Аридный климат

· Гумидный климат

· Нивальный климат

· Солярный климат

· Муссонный климат

· Пассатный климат

№33 Ветер

На Земле ветер является потоком воздуха, который движется преимущественно в горизонтальном направлении; на других планетах он является потоком свойственным этим планетам атмосферных газов. Сильнейшие ветры Солнечной системы наблюдаются на Нептуне и Сатурне. Солнечный ветер является потоком разряженных газов отзвезды, а планетарный ветер является потоком газов, отвечающих за дегазацию планетарной атмосферы в космическое пространство. Ветры, как правило, классифицируют по масштабам, скорости, видам сил, которые их вызывают, местам распространения и воздействию на окружающую среду.

Ветры классифицируют, в первую очередь, по их силе, продолжительности и направлению. Таким образом, порывами принято считать кратковременные (несколько секунд) и сильные перемещения воздуха. Сильные ветры средней продолжительности (примерно 1 минута) называются шквалами. Названия более продолжительных ветров зависят от силы, например, такими названиями являются бриз, буря, шторм, ураган, тайфун. Продолжительность ветра также сильно варьируется: некоторые грозымогут длиться несколько минут, бриз, который зависит от разницы нагрева особенностей рельефа на протяжении суток, длится несколько часов, глобальные ветры, вызванные сезонными изменениями температуры — муссоны — имеют продолжительность несколько месяцев, тогда как глобальные ветры, вызванные разницей в температуре на разных широтах и силой Кориолиса, дуют постоянно и называются пассаты. Муссоны и пассаты являются ветрами, из которых слагается общая и местная циркуляция атмосферы.

Ветры всегда влияли на человеческую цивилизацию, они вдохновляли на мифологические рассказы, влияли на исторические действия, расширяли диапазон торговли,культурного развития и войн, поставляли энергию для разнообразных механизмов производства энергии и отдыха. Благодаря парусным суднам, которые плыли за счет ветра, впервые появилась возможность преодолевать большие расстояния по морям и океанам. Воздушные шары, которые тоже двигались с помощью ветра, впервые позволили отправляться в воздушные путешествия, а современные летательные аппараты используют ветер для увеличения подъемной силы и экономии топлива. Однако, ветры могут быть и небезопасными, так градиентные колебания ветра могут вызвать потерю контроля над самолетом, быстрые ветры, а также вызванные ими большие волны, на больших водоемах часто приводят к разрушению штучных построек, а в некоторых случаях ветры способны увеличивать масштабы пожара.

Ветры могут влиять и на формирование рельефа, вызывая эоловые отложения, которые формируют различные видыгрунтов (например, лёсс) или эрозию. Они могут переносить пески и пыль из пустынь на большие расстояния. Ветры разносят семена растений и помогают передвижению летающих животных, которые приводят к расширению видов на новой территории. Связанные с ветром явления разнообразными способами влияют на живую природу.

Ветер возникает в результате неравномерного распределения атмосферного давления и направлен от зоны высокого давления к зоне низкого давления. Вследствие непрерывного изменения давления во времени и пространстве скорость инаправление ветра постоянно меняются. С высотой скорость ветра меняется из-за убывания силы трения.

Для визуальной оценки скорости ветра служит шкала Бофорта. Метеорологическое направление ветра указываетсяазимутом точки, откуда дует ветер; тогда как аэронавигационное[1] направление ветра — куда дует, таким образом значения различаются на 180°. Многолетние наблюдения за направлением и силой ветра изображают в виде графика — розы ветров.

В ряде случаев важным является не само направление ветра, а положение объекта относительно него. Так, при охоте на животное с острым нюхом к нему подходят с подветренной стороны[2] — во избежание распространения запаха от охотника в сторону животного.

Вертикальное движение воздуха называется восходящим или нисходящим потоком.

№34 Солнечная радиация.

Со́лнечная радиа́ция — электромагнитное и корпускулярное излучение Солнца. Следует отметить, что данный термин является калькой с англ. Solar radiation («Солнечное излучение»), и в данном случае не означает радиацию в «бытовом» смысле этого слова (ионизирующее излучение).

Солнечная радиация измеряется по её тепловому действию (калории на единицу поверхности за единицу времени) и интенсивности (ватты на единицу поверхности). В целом, Земля получает от Солнца менее 0,5×10-9 от его излучения.

Электромагнитная составляющая солнечной радиации распространяется со скоростью света и проникает в земнуюатмосферу. До земной поверхности солнечная радиация доходит в виде прямой и рассеянной радиации. Всего Земляполучает от Солнца менее одной двухмиллиардной его излучения. Спектральный диапазон электромагнитного излучения Солнца очень широк — от радиоволн до рентгеновских лучей — однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.

Существует также корпускулярная часть солнечной радиации, состоящая преимущественно из протонов, движущихся от Солнца со скоростями 300—1500 км/с (см. Солнечный ветер). Во время солнечных вспышек образуются также частицы больших энергий (в основном протоны и электроны), образующие солнечную компоненту космических лучей.

Энергетический вклад корпускулярной составляющей солнечной радиации в её общую интенсивность невелик по сравнению с электромагнитной. Поэтому в ряде приложений термин «солнечная радиация» используют в узком смысле, имея в виду только её электромагнитную часть.

Солнечная радиация — главный источник энергии для всех физико-географических процессов, происходящих на земной поверхности и в атмосфере (см. Инсоляция). Количество солнечной радиации зависит от высоты солнца, времени года, прозрачности атмосферы. Для измерения солнечной радиации служат актинометры ипиргелиометры. Интенсивность солнечной радиации обычно измеряется по её тепловому действию и выражается в калориях на единицу поверхности за единицу времени (см. Солнечная постоянная).

№35 Понятие атмосферной конвекции. Атмосферные осадки.

Атмосферные осадки – это всякая влага, выпавшая из атмосферы на земную поверхность. К ним относятся дождь, снег, град, роса, иней. Осадки могут выпадать как из облаков (дождь, снег, град), так и из воздуха (роса, иней). Главным условием образования атмосферных осадков является охлаждение тёплого воздуха, приводящее к конденсации содержащегося в нём пара.При подъёме и охлаждении тёплого воздуха образуются облака, состоящие из капелек воды. Сталкиваясь в облаке, капли соединяются, увеличивается их масса. Нижняя часть облака синеет, и оно проливается дождём. При отрицательных температурах воздуха капли воды в облаках замерзают и превращаются в снежинки. Снежинки слипаются в хлопья и выпадают на землю. Во время снегопада они могут немного подтаять, и тогда идёт мокрый снег. Бывает, что воздушные потоки многократно опускают и поднимают замёрзшие капли, в это время на них нарастают ледяные слои. Наконец капли становятся такими тяжёлыми, что выпадают на землю градом. Иногда градины достигают размера куриного яйца. В летнее время при ясной погоде охлаждается земная поверхность. От неё охлаждаются приземные слои воздуха. Водяной пар начинает конденсироваться на холодных предметах – листьях, траве, камнях. Так образуется роса. Если температура поверхности была отрицательной, то капельки воды замерзают, образуя иней. Роса обычно выпадает летом, иней – весной и осенью. При этом и роса, и иней могут образоваться только при ясной погоде. Если небо закрыто облаками, то земная поверхность остывает незначительно и не может охладить воздух. По способу образования выделяются конвективные, фронтальные и орографические осадки. Общим условием образования осадков является восходящее движение воздуха и его охлаждение. В первом случае причиной подъёма воздуха является его нагревание от тёплой поверхности (конвекция). Такие осадки выпадают круглый год в жарком поясе и в летнее время в умеренных широтах. Если тёплый воздух поднимается вверх при взаимодействии с более холодным воздухом, то образуются фронтальные осадки. Они в большей мере свойственны умеренным и холодным поясам, где чаще встречаются тёплые и холодные воздушные массы. Причиной подъёма тёплого воздуха может быть его столкновение с горами. В этом случае образуются орографические осадки. Они характерны для наветренных склонов гор, причём количество осадков на склонах больше, чем на прилегающих уч



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: