Геометрический смысл алгебраических операций




Пусть даны два комплексных числа z1 и z2. В результате сложения этих чисел получается число z3, изображаемое вектором 0С диагонали параллелограмма 0АСВ (по правилу параллелограмма сложения векторов): z1+z2=0A+0B=0C=z3.

Разность (z1-z2) данных чисел, соответствующая их вычитанию, можно рассматривать как сумму вектора 0А, изображающего число z1 и вектора 0D=--0В, противоположного вектору 0В (симметричного ему относительно начала координат): z1-z2=z1+(-z2)=0A+0D=0E=BA. Таким образом, разности (z1-z2) данных чисел соответствует вектор ВА другой диагонали параллелограмма 0АСВ (рис.4).

Рис.4 – Геометрический смысл суммы и разности комплексных чисел

 

Для иллюстрации остальных алгебраических действий над комплексными числами более удобна тригонометрическая форма.

Умножение. Пусть даны два комплексных числа z1=r1(cosφ1+isinφ1) и z2=r2(cosφ2+isinφ2). Перемножая их получим z1z2=r1r2(cos(φ12)+isin(φ12)). Следовательно, при умножении комплексных чисел их модули перемножаются, а аргументы складываются. Это правило верно и для любого числа сомножителей.

Деление. Если требуется разделить z1 на z2, то выполняем следующие преобразования: z1/z2=(z1z2)/(z2z2)=(r1(cosφ1+isinφ1)r2(cosφ2-isinφ2))/ (r2(cosφ2+isinφ2)r2(cosφ2-isinφ2))=(r1/r2)(cos(φ12)+isin(φ12)), т.е. при делении двух комплексных чисел их модули делятся, а аргументы вычитаются.

Возведение в степень. Умножая число z=r(cosφ+isinφ) само на себя «n» раз, получаем согласно правилу умножения zn=rn(cosφ+isinφ)n=rn(cosnφ+isinnφ). Таким образом, при возведении комплексного числа в степень «n» в ту же степень возводится его модуль, а аргумент умножается на «n» (на показатель степени). В частном случае, если Извлечение корня. Пусть а=reiφ, z=ρe. Решаем уравнение zn=a для вычисления n√a: ρneinσ=reiφ. Отсюда с учетом того, что аргументы чисел отличаются на целое кратное числу 2π, получаем: ρn=r, nσ-φ=2πK, или ρ=n√r; σK+1=(φ+2πK)/n (причем К=0,1,2…n-1). Таким образом, zk=n√r(cosφ+isinφ)=n√r((cosφ+2Kπ)/n+isin(φ+2Kπ)/n)), (8)

где n√r, - арифметический корень, а К=0,1,2,…,n-1; т.е. корень степени n в множестве комплексных чисел имеет “n” различных значений zk (исключение представляет z=0. В этом случае все значения корня равны между собой и равны нулю).

Заметим также, что разность между аргументами соседних чисел zk+1 и zk постоянна и равна 2π/n: σk+1k=(φ+2π(K+1))/n-(φ+2πK)/n=2π/n. Отсюда следует, что все значения n√a располагаются на комплексной плоскости в вершинах некоторого правильного n-угольника с центром в начале координат.

 

Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней

Формула Кардано

 

Рассмотрим приведенное алгебраическое уравнение 3-ей степени: x3+ax2+bx+c=0

(общее уравнение 3-ей степени сводится к приведенному делением на коэффициент при старшей степени). С помощью замены x=y-a/3 это уравнение примет вид:

y3+py+q=0,

где p и q – новые коэффициенты, зависящие от a,b,c.

Пусть у0 – какой либо корень уравнения (10). Представим его в виде у0=α+β, где α и β – неизвестные пока числа, и подставим в уравнение. Получим α33+(α+β)(3αβ+p)+q=0

Выберем теперь α и β так, чтобы 3αβ+р=0. Такой выбор чисел α и β возможен, т.к. они (вообще говоря комплексные) удовлетворяют системе уравнений

α+β=у0;

αβ=-р/3, а значит, существуют.

При этих условиях уравнение (10) примет вид α33+q=0, а т.к. еще α3β3=-р3/27, то получаем систему

α33=-q;

α3β3=-р3/27,

из которой по теореме Виета следует, что α3 и β3 являются корнями уравнения t2+qt-p3/27=0. Отсюда находим: α3=-q/2+√q2/4+p3/27; β3=-q/2-√q2/4+p3/27, где √q2/4+p3/27 означает одно из возможных значений квадратного корня. Отсюда следует, что корни уравнения (9) выражаются формулой D=(q/2)2+(p/3)3.

y1.2.3=n√-q/2+√q2/4+p3/27+3√-q/2-√q2/4+p3/27, причем для каждого из трех значение первого корня 3√α соответствующие значения второго корня 3√β нужно брать так, чтобы было выполнено условие αβ=-р/3. Полученная формула называется формулой Кардано (ее можно записать в более компактном виде у=3√α+3√β, где α=-q/2+√q2/4+p3/27; β=-q/2-√q2/4+p3/27. Подставив в нее вместо р и q их выражения через a,b,c и вычитая а/3, получим формулу для уравнения.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: