Общие свойства датчиков. Датчики скорости




Общие свойства датчиков

 

На датчик могут одновременно воздействовать различные физические величины (давление, температура, влажность, вибрация, ядерная реакция, магнитные и электрические поля и т. д.), но воспринимать он должен только одну величину, называемую естественной величиной .

На рисунке 1 показано устройство воспринимающей системы. Датчик возвращает некую величину , зависящую от , которая затем поступает на предварительную обработку.

 

Рис. 1. Устройство воспринимающей системы с получением, обработкой и преобразованием сигнала: - первичный процесс, - вторичный процесс, - измерительный мост, Amp – усилитель.

 

Функциональную зависимость выходной величины датчика от естественной измеряемой величины в статических условиях, выраженную аналитически, таблично или графически, называют статической характеристикой датчика.

Статическая чувствительность представляет собой отношение малых приращений выходной величины к соответствующим малым приращениям входной величины в статических условиях. По определению, статическая чувствительность равна или, переходя к пределу, будем иметь

.

Это соотношение является постоянным, когда выходная величина (выходной сигнал) представляет собой линейную функцию входной величины (выходного сигнала). Если имеется нелинейная функция, то должны быть указаны точки, к которым относится данная чувствительность. В некоторых случаях чувствительность может быть представлена в виде наклона секущей между двумя характеристическими точками статической нелинейной характеристики.

Понятие статической чувствительности аналогично понятию коэффициента усиления; градиента; коэффициента чувствительности.

Чувствительность датчика – это, как правило, именованная величина с разнообразной размерностью, зависящей от природы входной и выходной величин.

Понятие чувствительности можно распространить на динамические условия работы. При этом под чувствительностью подразумевают отношение скорости изменения выходного сигнала к соответствующей скорости изменения входного сигнала:

.

В случае периодических, в частности синусоидальных, сигналов чувствительность может быть определена как отношение амплитуд выхода и входа.

Под порогом чувствительности датчика понимают минимальное изменение измеряемой величины (входного сигнала), вызывающее изменение входного сигнала. Наиболее характерным показателем качества датчика является полный диапазон датчика, выражаемый отношением

,

где - естественный предел измерения; - порог чувствительности датчика.

Для каждого типа датчиков существует практически достижимый предел величины , определяемый принципом действия и характеристиками чувствительного элемента.

Гистерезисом называют неоднозначность хода статической характеристики датчика при увеличении и уменьшении входной величины.

Для упругих элементов (мембраны, пружины и т. д.) в понятие гистерезис также включают понятие упругое последействие.

Гистерезис относится в общем случае к случайным погрешностям, так как его величина определяется не только значениями входной величины, но и временными характеристиками работы датчика. Гистерезис выражается в процентах

,

где - изменение выходной величины в рабочих пределах.

Гистерезис возникает в датчиках из-за внутреннего трения в упругих элементах, трения в подвижных элементах, ползучести (например, в наклеиваемых тензодатчиках), магнитного гистерезиса и т. п.

Основной погрешностью датчика является максимальная разность между действительным значением выходного сигнала и его величиной, соответствующей истинному значению входного параметра. Эта разность определяется по статической характеристике датчика при нормальных условиях и обычно относится к разности предельных значений выходной величины:

.

Нормальными условиями эксплуатации датчика являются: температура окружающей среды ; атмосферное давление Па/ мм рт. ст.; относительная влажность окружающего воздуха ; отсутствие вибрации и полей, кроме гравитационного.

Дополнительные погрешности датчика – это погрешности, вызываемые изменением внешних условий по сравнению с нормальными. Они выражаются в процентах, отнесённых к изменению неизмеряемого параметра (например, температурная погрешность на и т. д.).

Первичной погрешностью датчика называют отклонение его параметра от расчётного значения:

,

где - первичная погрешность параметра ; - расчётное значение параметра ; - индекс (номер) преобразователя; - индекс (номер) параметра.

Первичная погрешность датчика вызывает отклонение выходной величины от её расчётного значения при заданном значении входной величины . Это отклонение принято называть частной погрешностью датчика:

;

.

Суммарная погрешность датчика определяется как сумма частных погрешностей. Способ суммирования определяется природой первичных погрешностей.

При систематических первичных погрешностях частная погрешность датчика определяется по зависимости

.

Если первичные погрешности случайные, то предельное значение погрешности датчика можно определить квадратичным суммированием предельных значений частных погрешностей:

.

Практическая оценка погрешности измерений различных физических параметров часто усложняется большим числом одновременно действующих независимых факторов, вызывающих частные погрешности.

 

 

Датчики скорости

 

Датчики скорости широко применяются в разных отраслях промышленности, сегодня существует много моделей, действующих по разному принципу и способных работать в различных условиях.

В промышленной измерительной технике требуются очень точные методы определения расхода и скоро­сти потока. При этом допустимые погрешности не должны превышать одного процента, а иногда и од­ной десятой процента. Довольно точные измерители расхода требуются иногда и в быту (например, газовый счетчик). Недавно появились оптоэлектронные измерители расхода и скорости, рабо­тающие па оптическом эффекте Допплера (см. рисунок 2), которые исполь­зуют особый вид рассеяния света.

В данном случае луч лазера разделяется светоделительной пластинкой на два отдельных световых пучка, которые фокусируются затем с помощью линзы в протекающей среде. Рассеянный потоком свет попадает затем на фотодетектор (фотоумножитель), где он преобразуется в электрический ток. Усиленный допплеровский сигнал электронным путём преобразуется затем в пропорциональное расходу измерительное напряжение.

Рис. 2. Устройство лазерного допплеровского анемометра для измерения скоростей потоков в трубопроводе.

 

Такой способ измерения расхода довольно дорог, но его достоинство состоит в том, что поток не искажается процедурой измерения и профиль потока может быть измерен с очень хорошим разрешением, так как регистрируется только скорость в точке фокуса. Однако для любительской практики этот метод непригоден.

Измерения расхода можно осуществить чисто электронным путём, применяя в качестве датчика самонагревающийся резистор. Сопротивление такого резистора изменяется вследствие охлаждения потоком, в результате чего резистор действует как датчик расхода. На рисунке 3 показано омическое сопротивление (элемент датчика) в канале потока.

Рис. 3. Схематическое изображение процессов теплопередачи от самонагревающегося резистора в канале потока.

 

Ток нагревает этот элемент до температуры . В этих условиях теплоотвод осуществляется несколькими путями:

- теплопроводность через среду потока к стенкам трубы; ;

- теплопроводность через механический держатель и электропровода; ;

- теплопередача путём излучения (по закону Стефана-Больцмана );

- теплопередача путём свободной конвекции; ;

- теплопередача путём вынужденной конвекции (поток):

,

где - объёмный расход.

В итоге омический элемент датчика оказывается в состоянии теплового равновесия, т. е. Количество подводимой энергии равно количеству отводимой.

Поскольку подводимая электрическая энергия равна , равновесие определяется выражением

,

где представляет собой собственно измеряемую величину, т. к. она определяется потоком в канале. Поэтому все остальные формы теплопередачи могут быть выражены константой. В этом случае получается т. н. уравнение Кинга

,

где . В этом уравнении и можно считать аппаратурными параметрами, остающимися постоянными в известных пределах.

Применяется также ультразвуковой датчик скорости, излучающий ультразвуковой сигнал, который при отражении от частиц, движущихся с разной скоростью, дает широкополосный отраженный сигнал, который принимается датчиком. Анализ спектра этого сигнала позволяет рассчитать осредненную скорость потока с учетом неравномерного распределения скоростей по поперечному профилю сечения.

Датчик скорости автомобиля (ДСА) сконструирован по принципу эффекта Холла и предназначен для преобразования частоты вращения приводного вала в частоту электрических импульсов, пропорциональных скорости движения автомобиля, или преобразования количества оборотов приводного вала в количество электрических импульсов, пропорциональных пройденному пути автомобиля, а также для систем управления впрыском топлива.

Интегрированный датчик скорости вращения вентилятора TC670, предсказывающий и/или обнаруживающий выход из строя вентилятора, предотвращая тепловое повреждение устройства с охлаждением вентиляторами. Когда скорость вращение вентилятора ниже установленного, формируется сигнал тревоги -ALERT (низкий логический уровень). Нижнее значение скорости вращения вентилятора задается резистором, подключенным к выводу THRESHOLD. Микросхема предназначена для работы с 2-х выводными вентиляторами. TC670 позволяет отказаться от использования 3-х выводных вентиляторов в устройстве. По сигналу CLEAR сбрасывается активный уровень на выводе -ALTER. Эта функция позволяет использовать TC670 в составе системы контроля работы вентиляторов.

Бесконтактные магнитные датчики VSP-DD-3000M применяются как датчики скорости. Устройства реагируют на движущиеся тела из токопроводящих материалов. Применение этих датчиков особенно удобно для контроля транспортных механизмов (типа норий, транспортеров и т.п.), которые перемещают продукт диэлектрической природы. В этом случае можно исключить влияние продукта на срабатывание датчика. Достаточно большая рабочая зона датчика позволяет не изготавливать специальные крыльчатки и другие дополнительные приспособления для контроля скорости движущихся механизмов, а использовать уже имеющиеся в конструкциях механизмов движущиеся металлические детали (спицы колес, болты крепления на колесах, лентах и т.п.). Эти элементы конструкции периодически проходя через зону чувствительности датчика, вызывают его срабатывание, что позволяет контролировать скорость этих механизмов при помощи устройств с функцией контроля скорости.

 

 

Заключение

 

В работе были рассмотрены общие свойства датчиков и область их применения. Более подробно затрагиваются датчики скорости, объясняется принцип действия на примере конкретных моделей.

На сегодняшний день существует большое количество различных датчиков скорости, предназначенных для работы в разных условиях, с разными входными параметрами. Датчики скорости нашли широкое применение в промышленности и техники.

 

 

Список использованных источников

 

1. Виглеб Г., Датчики: устройство и применение, 1989;

2. Осипович Л. А., Датчики физических величин, 1979;

3. https://www.chipdip.ru/

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: