МЕТОДЫ ОПРЕДЕЛЕНИЯ СВОЙСТВ ГРУНТОВ





Грунты определяют устойчивость возводимых на них зданий и сооружений, поэтому необходимо правильно определять характеристики, которые обусловливают прочность и устойчивость грунтов при их взаимодействии со строительными объектами.
Химико-минеральный состав, структуры и текстуры грунтов, содержание органического вещества определяются в геологических лабораториях, оснащенных необходимой аппаратурой (рентген, электронный микроскоп и т. д.). Физико-механические свойства грунтов изучают в грунтоведческих лабораториях и в полевых условиях, т. е. непосредственно на будущих строительных площадках. Методика определения физико-механических свойств выбирается в зависимости от состава и состояния грунтов, условий их поведения в основании как при строительстве, так и в процессе эксплуатации зданий и сооружений. Особое внимание при этом обращается на достоверность получаемых результатов, так как грунты и грунтовые напластования весьма изменчивы в пространстве и во времени.
По каждой физико-механической характеристике грунтов выполняется несколько определений и проводится их статистический анализ. Количество определений зависит от характера грунтов, назначения сооружения и его конструктивных особенностей. В частности, как правило, для каждого инженерно-геологического элемента минимальное количество определений должно быть не менее шести и только в случаях продолжительных полевых испытаний значения механических характеристик устанавливается по данным трех испытаний.
Грунтоведческая лаборатория. Образцы грунтов для лабораторных исследований отбираются по слоям грунтов в шурфах, в буровых скважинах, которые располагают на исследуемых строительных площадках.
В лабораторию образцы грунтов доставляют в виде монолитов или рыхлых проб. Монолиты — это образцы фунтов с ненарушенной структурой. Такие монолиты отбирают в скальных и связных (пыле вато-глинистых) фунтах. Размеры монолитов должны быть не меньше установленных норм. Так, для определения сжимаемости фунта, пробы, отбираемые в шурфах, должны иметь размеры 20 х 20 х 20 см. В монолитах пылевато-глинистых фунтов при этом должна быть сохранена природная влажность. Это достигается созданием на их поверхности водонепроницаемой парафиновой или восковой (иногда битумной) оболочки. В рыхлых фунтах (песок, фавий и т. д.) образцы отбирают в виде 194 проб определенной массы. Так, для проведения гранулометрического анализа песка необходимо иметь пробу не менее 0,5 кг.
В лабораторных условиях можно определять все физико-механические свойства грунтов. Каждая характеристика этих свойств определяется согласно своему ГОСТу, например, природная влажность и плотность грунта — ГОСТ 5180—84, предел прочности — ГОСТ 17245—79, гранулометрический (зерновой) и микроаг- регатный состав — ГОСТ 12536—79 и т. д.
Лабораторные исследования на сегодня остаются основным видом определения физико-механических свойств грунтов. Ряд характеристик, например, природная влажность, плотность частиц грунта и некоторые другие определяются только в лабораторных условиях и с достаточно высокой точностью. В то же время лабораторные исследования грунтов имеют свои недостатки:
• они довольно трудоемки и требуют больших затрат времени;
• результаты отдельных анализов, например определение модуля общей деформации, не дает достаточно точных результатов, что бывает связано с неправильным отбором монолитов, неправильным их хранением, низкой квалификацией исполнителя анализа;
• определение свойств массива грунта по результатам анализов небольшого количества образцов не позволяют получать верное представление о его свойствах в целом.
Это связано с тем, что однотипные грунты, даже в пределах одного массива, все же имеют известные различия в своих свойствах.
Полевые работы. Исследование грунтов в полевых условиях, т. е. на исследуемой строительной площадке, дает определенное преимущество перед лабораторным анализом. Это позволяет определять значения характеристик физико-механических свойств в условиях естественного залегания грунтов без разрушения их структуры и текстуры, с сохранением режима влажности. При полевых исследованиях лучше, чем по результатам лабораторных анализов, моделируется работа массивов грунтов в основаниях зданий и сооружений.
Полевые методы исследования грунтов обеспечивают высокую точность результатов, поэтому в последние годы их используют все больше. При этом совершенствуется техническая оснащенность, применяются ЭВМ. Некоторые полевые методы относятся к экспресс-методам, что позволяет быстрее получать результаты изучения свойств грунтов.
Необходимо отметить, что если полевые методы дают хорошую возможность определять свойства в условиях естественного залегания грунтов, то они не всегда позволяют прогнозировать поведение массивов грунтов на период эксплуатации зданий и
сооружений. Поэтому целесообразно разумно сочетать лабораторные и полевые методы.
В полевых условиях определяют все прочностные и деформационные характеристики как скальных, так и нескальных грунтов.
Среди методов деформационных испытаний грунтов на сжимаемость эталонным следует считать метод полевых штамповых испытаний (ГОСТ 20278—85). Результаты других методов деформационных испытаний, как полевых (прессиометрия, динамическое и статическое зондирование), так и лабораторных (компрессионные и стабилометрические) обязательно должны сопоставляться с результатами штамповых испытаний.
При определении прочностных характеристик грунтов наиболее достоверные результаты дают полевые испытания на срез целиков грунта непосредственно на строительной площадке (ГОСТ 23741—79). Из-за высокой стоимости и трудоемкости этих работ их проводят только для сооружений I класса применительно к расчетам по несущей способности. К I классу относятся здания и сооружения, имеющие большое хозяйственное значение, социальные объекты, объекты, требующие повышенной надежности (главные корпуса ТЭС, АЭС, телевизионные башни, промышленные трубы высотой более 200 м, здания театров, цирков, рынков, учебных заведений и т. д.). Для других случаев строительства (II и III классы сооружений) достаточно надежные показатели Си ф получают в результате лабораторных испытаний грунтов в приборах плоского среза (ГОСТ 12248—78) и трехосного сжатия (ГОСТ 26518—85).
Прочностные характеристики можно также определять по методу лопастного зондирования. Результаты этой работы при проектировании ответственных сооружений сопоставляют со сдвиговыми испытаниями. Это обеспечивает достаточную достоверность результатов исследований.
Ниже приводится краткое описание полевых методов исследований, с помощью которых определяются механические характеристики грунтов, показываются примеры выявления свойств грунтов с помощью производства опытных строительных работ.
Деформационные испытания грунтов. Сжимаемость грунтов изучают методами штампов, прессиометрами, динамическим и статическим зондированием.
Метод штампов. В нескальных грунтах на дне шурфов или в забое буровых скважин устанавливают штампы, на которые передаются статические нагрузки (ГОСТ 20276—85). Штамп в шурфе — это стальная или железобетонная плита. Форма штампа находится в зависимости от фундамента, который он моделирует, и может быть различной, но чаще всего плита круглая площадью

 

Рис. 51. Определение сжимаемости грунтов штампами:
/ и //—шурфы; ///—буровые скважины; 1— штампы; 2 — домкрат; 3— анкерные сваи;
4 — платформы с грузом; 5 — штанга

5000 см2. Для создания под штампом заданного напряжения применяют домкраты или платформы с грузом (рис. 51). Осадку штампов измеряют прогибомерами. При проходке шурфа на отметке подошвы штампа и вне его отбирают образцы грунтов для параллельных лабораторных исследований. Нагружение штампа производят ступенями и выдерживают определенное время. Значение нагрузки устанавливается в зависимости от вида грунта и его состояния. В итоге работы строят графики:
• зависимости осадки штампа от давления;
• осадки штампа во времени по ступеням нагрузки. После этого по формуле вычисляют модуль деформации грунта Е, МПа.
Штамп в буровой скважине. Для производства работ бурят скважину диаметром более 320 мм. Испытание грунтов проводят специальными установками, которые дают возможность работать на глубине скважины до 20 м. На забой скважины опускают штамп площадью 600 см2. Нагрузка на штамп передается через штангу, на которой располагается платформа с грузом. Модуль деформации определяют по формуле.
Определение модуля деформации в массиве скального грунта проводят в опытных котлованах. Испытания ведут с помощью прибетонированных к скале бетонных штампов. Давление на штампы подается от гидравлических домкратов (до 10 МПа). Конечным результатом работы является определение модуля деформации скального грунта по соответствующей формуле.
Прессиометрические исследования проводят в глинистых грунтах с помощью разведочных скважин. Прессиометр представляет собой резиновую цилиндрическую камеру, которую опускают в скважину на заданную глубину Камеру расширяют давлением жидкости или газа. В процессе работы в стенках скважины замеряют радиальное перемещение грунта и давление. Это позволяет определять модуль деформации грунтов.
Зондирование (или пенетрация) используется для изучения толщ пород до глубины 15—20 м. Сущность метода заключается в определении сопротивления проникновению в грунт металлического наконечника (зонда). Зондирование дает представление о плотности и прочности грунтов на определенной глубине и характеризует изменение в вертикальном разрезе.
Зондирование относится к экспресс-методам определения механических свойств фунтов и применяется в целях ускоренного получения результатов исследований. Этот метод используется при изучении песчаных, глинистых и органогенных фунтов, которые не содержат или мало содержат примесей щебня или гальки. По способу погружения наконечника различают зондирование динамическое и статическое. При статическом зондировании конус в фунт залавливается плавно, а при динамическом его забивают молотом.
Статическое зондирование позволяет:
• расчленить толщу фунта на отдельные слои;
• определить глубину залегания скальных и крупнообломочных фунтов;
• установить приблизительно плотность песков, консистенцию глинистых фунтов, определить модуль деформации;
• оценить качество искусственно уплотненных фунтов в насыпях и намывных образованиях;
• измерить мощность органогенных фунтов на болотах.
Динамическое зондирование дает возможность определять:
• мощность толщ современных (четвертичных) отложений;
• фаницы между слоями;
• степень уплотнения насыпных и намывных фунтов.
На рис. 52 показана пенетрационно-каротажная станция.
Прочностные испытания грунтов. Оценка сопротивления фунтов сдвигу в полевых условиях выполняется как в скальных, так и в нескальных фунтах. Сопротивление фунтов сдвигу определяется предельными значениями напряжений, при которых начинается их разрушение.
В скальных грунтах опыты проводят в строительных котлованах, в которых оставляют целики в виде ненарушенного фунта столбчатого вида. К целикам прикладывают горизонтальное сдвигающее усилие. При этом для правильного определения внутреннего трения и удельного сцепления опыт проводят не менее чем на трех столбчатых целиках.

 

Рис. 52. Пенетрационно-каротажная станция:
1 — зонд-датчик; 2 — штанга; 3 — мачта; 4 — гидроцилиндр; 5 — канал связи; 6 — передвижная аппаратная станция; 7—пульт управления

 

Сдвиг в нескальных грунтах выполняют двумя способами: 1) на целиках; 2) с помощью вращательных срезов при кручении крыльчатки. Работа на целиках аналогична скальным грунтам. Крыльчатка представляет собой лопастной прибор и используется для определения сопротивления сдвигу в пылевато-глинистых грунтах. Крыльчатый четырехлопастной зонд опускают в забой скважины, вдавливают в грунт и поворачивают. При этом замеряют крутящий момент и рассчитывают сопротивление сдвигу.
Опытные строительные работы. При строительстве объектов I класса полевые исследования грунтов приобретают особо важное значение. В ряде случаев прибегают к опытным строительным работам, т. е. к испытаниям грунтов строительными конструкциями. Приведем примеры таких работ.
Опытные сваи. В пылевато-глинистый грунт строительной площадки забивают железобетонную сваю, при этом наблюдают за характером погружения сваи и сопротивляемостью грунта. На сваю дают нагрузку и определяют ее несущую способность, как в условиях природной влажности грунта, так и при его замачива
нии. Результаты испытаний сравнивают с расчетными данными, полученными на основе лабораторных исследований грунта.
Опытные фундаменты. Строят фундамент будущего здания в натуральную величину и на проектную глубину. На фундамент дают нагрузку, соответствующую нагрузке от будущего здания, и ведут наблюдения за сжатием фунта основания. Так определяется реальная несущая способность грунта и осадка будущего объекта.
Опытные здания. Лессовые фунты обладают просадочными свойствами. Количественную оценку этих свойств производят по данным лабораторных исследований и полевых испытаний фунтов. Несмотря на такую комплексную оценку просадочных свойств не всегда удается правильно оценить будущую устойчивость здания. Для решения этого вопроса строят здания в натуральную величину. Лессовые основания насыщают водой, что искусственно вызывает просадочный процесс. В этот период проводят наблюдения за характером развития просадочного процесса, определяют значения просадок, оценивают состояние конструкций зданий.
Обработка результатов исследований грунтов. Оценку свойств массивов фунтов проводят на основе физико-механических характеристик, которые получают по нормативным документам, в результате лабораторных исследований отдельных образцов фунтов и полевых работ на территории массива. Полученные в лаборатории и в поле характеристики отвечают только тем точкам, где были отобраны образцы и проведены полевые испытания фунтов. В связи с этим разрозненные результаты исследований и нормативные показатели необходимо обобщить, т. е. статистически обработать с целью получения усредненных значений и установления их применимости для всего массива фунта. После такой обработки результаты исследований можно использовать в расчетах оснований. Такую работу чаще всего выполняют методом математической статистики.
Стационарные наблюдения при инженерно-геологических и гидрогеологических исследованиях проводят за развитием неблагоприятных геологических процессов (карстом, оползнями и др.), режимом подземных вод и температурным режимом многолетнемерзлых пород. Заключаются они в выборе характерных участков для наблюдений, установке сети реперов, инструментальных наблюдениях за их перемещением и т. д. Наблюдения ведут в период эксплуатации зданий и сооружений, но они могут быть начаты и в период их проектирования.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: