Следствия из преобразований лоренца




Преобразование Галилея. Механический принцип относительности. Постулаты специальной теории относительности. Преобразование Лоренца. Следствие из преобразований Лоренца: сокращение продольных размеров движущих тел, замедление хода движущихся часов.

В 1632 г. в книге «Диалог о двух главнейших системах мира – Птолемеевой и Коперниковой» Галилей обосновал принцип относительности, ставший одним из первых основных принципов физики. Согласно этому принципу все ИСО по своим механическим свойствам эквивалентны друг другу. Это значит, что никакими механическими опытами, проводимыми внутри данной ИСО, нельзя установить, покоится эта система или движется равномерно и прямолинейно. Этот принцип является обобщением опыта и подтверждается всем многообразием приложений механики Ньютона к движению тел, скорости которых значительно меньше скорости света.

Все сказанное достаточно ясно свидетельствует об исключительности свойств ИСО, в силу чего именно эти системы должны, как правило, использоваться для изучения механических явлений.

Найдем формулы преобразования координат при переходе от одной ИСО к другой. Допустим, что система отсчета S инерциальна. Рассмотрим вторую систему отсчета S', движущуюся относительно первой поступательно с постоянной скоростью (рис. 2.8). Свяжем с каждой системой отсчета декартову систему координат. Пусть известно движение точки в одной из этих систем, например, в системе S, то есть известна зависимость координат точки от времени. Как найти движение той же точки в системе отсчета S'? Задача сводится к нахождению формул, выражающих координаты движущейся точки в системе отсчета S' через ее координаты в системе отсчета S в один и тот же момент времени. Начало координат и направление координатных осей можно выбрать произвольно как в системе отсчета S, так и в системе отсчета S'. Для простоты можно принять, что координатные оси системы S соответственно параллельны координатным осям системы S' и что в начальный момент начало системы координат, связанной с системой отсчета S, совпадает с началом системы координат, связанной с системой отсчета S'. Кроме того, предположим, что скорость параллельна оси . При этих условиях ось будет все время совпадать с осью .

Пусть в момент времени движущаяся точка находится в положении M. За время начало координат S' переходит из точки О в положение , причем, так как то

  , (2.12)

где и – радиус-векторы движущейся точки соответственно в системах отсчета S и

Спроецируем соотношение (2.12) на оси координат:

  (2.13)

Формулы обратного преобразования имеют вид

или в координатной форме

  (2.14)

Формулы (2.12–2.14) и дают решение поставленной задачи. Они называются преобразованиями Галилея. Мы присоединили к формулам преобразования координат дополнительное выражение , чтобы явно отметить, что время в механике Ньютона считается абсолютным (то есть не меняется при переходе от одной системы отсчета к другой) и поэтому не преобразуется.

С точки зрения «здравого смысла» преобразования Галилея кажутся очевидными. Однако в основе вывода лежит предположение механики Ньютона об абсолютности длин и промежутков времени. Абсолютность времени явно отмечена в уравнении , при выводе остальных формул использовалось предположение об абсолютности длин. Действительно, формулы (2.12–2.14) были бы очевидными, если и измерялись бы в одной системе отсчета. Мы же измеряем их в разных системах отсчета. По этой причине без предположения об абсолютности расстояний и промежутков времени нельзя обойтись. Релятивистская физика отказалась от такой абсолютности.

Чтобы получить формулы сложения скоростей в нерелятивистской механике, возьмем производную по времени от (2.12):

или

  , (2.15)

где – скорость точки в системе отсчета S, а – в системе отсчета . Эта формула выражает закон сложения скоростей в классической механике.

Возьмем производную по времени от (2.15), тогда получим

  (2.16)

где – ускорение точки в системе отсчета S, – в системе отсчета Таким образом, ускорение точки в обеих системах отсчета одинаково. Говорят, что ускорение инвариантно относительно преобразований Галилея.

По определению ИСО свободная материальная точка движется в системе отсчета S без ускорения. Формула (2.16) показывает, что движение данной материальной точки в системе отсчета будет также неускоренным. Следовательно, – также инерциальная система отсчета. Таким образом, система отсчета, движущаяся относительно инерциальной системы отсчета прямолинейно и равномерно, также является инерциальной системой. Следовательно, если существует хотя бы одна ИСО, то существует и бесконечное множество ИСО, движущихся относительно друг друга равномерно и прямолинейно.

Сила в классической механике может зависеть от разностей координат, разностей скоростей взаимодействующих точек и от времени. Поэтому, как видно из преобразований Галилея, она не меняется при переходе от одной системы отсчета к другой. Отсюда следует, что уравнение, выражающее второй закон Ньютона, остается неизменным при переходе от одной ИСО к другой. Такие уравнения называются инвариантными. Таким образом, уравнения механики Ньютона инвариантны относительно преобразований Галилея. Это утверждение и составляет содержание принципа относительности Галилея. Равноправие ИСО дает возможность в каждом конкретном случае подбирать систему отсчета, наиболее удобную для решения рассматриваемой задачи.

Итак, принцип относительности Галилея выражает полное равноправие всех ИСО. Однако означает ли это, что одно и то же движение выглядит одинаково во всех ИСО? Конечно, нет! Движение тела, свалившегося с полки равномерно движущегося вагона, является прямолинейным, если его рассматривать относительно вагона. Но то же самое движение происходит по параболе в системе отсчета, связанной с полотном железной дороги, хотя законы механики Ньютона одинаковы в обеих системах отсчета. Движения выглядят по-разному, так как для описания движения к уравнению движения необходимо добавить начальные условия, то есть задать начальное положение тела и его начальную скорость, а они будут различными в разных системах отсчета.

Специальная теория относительности
Во второй половине XIX в. Максвелл, развивая свою теорию электромагнетизма, показал, что свет—электромагнитная волна. Уравнения Максвелла подсказали, что скорость света с≈3.106 м/с. Предсказанная скорость света совпала с экспериментально измеренным значением в пределах погрешности. Но в какой СО с≈3.106 м/с6 Опыты А.Майкельсона и Э. Морли обнаружили независимость скорости света от выбора СО. Противоречия между механикой Ньютона и электродинамикой Максвелла послужили стимулом для создания А. Эйнштейном теории относительности (1905). Отдельные следствия СТО были получены еще до А.Эйнштейна голландским физиком Г.А.Лоренцем, англичанином Д.Фицджеральдом. Большой вклад в развитие идей СТО внесли А.Пуанкаре, Г.Минковский, Дж.Лармор и другие. Заслугой Эйнштейна является то, что он сумел найти истоки этих явлений, сформулировав их в виде постулатов, и на их основе получить новые следствия.
Постулаты теории относительности
А. Эйнштейн пришел к выводу, что обнаруженные им в электромагнитной теории противоречия обусловлены предположением существования абсолютного пространства. Первый постулат: законы физики имеют одинаковую форму во всех инерциальных системах отсчета. Этот постулат явился обобщением принципа относительности Ньютона не только на законы механики, но и на законы остальной физики. Первый постулат — принцип относительности. Второй постулат: свет распространяется в вакууме с определенной скоростью с, не зависящей от скорости источника или наблюдателя. Эти два постулата образуют основу теории относительности А. Эйнштейна.  
Преобразования Лоренца В СТО между координатами и временем в двух ИСО существуют соотношения, называемые преобразованиями Лоренца. Если СО движутся друг относительно друга вдоль оси ОХ, то их можно записать в виде, представленном справа. При условии v<<c они переходят в преобразования Галилея. С учетом преобразований Лоренца принцип относительности можно сформулировать следующим образом: законы, описывающие любые физические явления, во всех ИСО должны иметь одинаковый вид. Этот вывод называется релятивистской инвариантностью законов физики.

Следствия из преобразований лоренца



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-18 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: