ПУТЕШЕСТВИЕ НА МАШИНЕ ВРЕМЕНИ




Фантасты предсказали не только явление светового давления и многоярусную Вселенную. Вопреки распространенному заблуждению, что открытия невозможно предвидеть, фантасты (по крайней мере, в первой половине нашего века) сделали немало открытий. Это сейчас, когда в моду вошли фантастические истории из мира колдунов и фей, и когда тон стала задавать социальная фантастика, сами авторы как бы смирились и начали говорить вслед за учеными: ну, конечно, куда нам, мы и науку-то плохо знаем…

Несколько десятилетий назад популярной была научно-техническая фантастика, и предвидеть научные открытия было для хорошего фантаста делом чести.

Кто и когда первым заговорил о возможности антигравитации? Фантаст Г.Уэллс в романе "Первые люди на Луне", опубликованном в 1900 году, последнем году ХIХ века. Роман представлялся совершенно антинаучным, поскольку настоящие ученые утверждали, что все тела могут только притягивать друг друга, а отталкивания в природе нет и быть не может (представляете, яблоко не падает Ньютону на голову, а улетает в небо?).

Кто и когда первым заговорил о возможности передвижения во времени? Тут, я думаю, разногласий не будет: конечно, тот же Г.Уэллс в романе "Машина времени" (1896 год). Почти век идея считалась антинаучной, никто из ученых и не думал присуждать английскому фантасту премию за научное открытие. Такую премию, кстати говоря, получит, скорее всего, российский физик И.Д.Новиков, который спустя почти век после Уэллса сделал-таки открытие: оказывается, машина времени, в принципе, возможна! Не будь романа Уэллса, открытие Новикова стало бы для науки громом среди ясного неба…

И кстати, все тот же Уэллс сделал еще одно открытие - он писал о смертельной опасности инопланетных микробов и вообще всякой инопланетной живности. В "Войне миров" (1897 год) описано нашествие марсиан. Что спасло Землю от порабощения? Пушки? Сила духа и сопротивление людей? Ничего подобного. Марсиан убили обычные земные бактерии, совершенно безвредные для людей, но для инопланетной жизни - смертельно опасные.

До начала освоения космического пространства это открытие Уэллса никем не признавалось. Ну написал фантаст, и ладно. А когда впервые земной аппарат должен был не только опуститься на иное небесное тело, но и вернуться на Землю, - проблема возникла сама по себе (непредсказуемо, как считают ученые). "Аполлон-11" должен был вернуться домой, привезя частицы лунной породы. А если в этих частицах есть лунные бактерии? И если эти бактерии смертельны для нас? Очень непростой была задача стерилизации космического аппарата, и кстати говоря, вполне по методике Уэллса, стерилизуют сейчас не только возвращающиеся аппараты, но и те, которым предстоит опуститься на поверхность Марса и его спутников. Иначе - мало ли что может случиться…

Еще одно открытие, которое ученые так и не смогли предсказать заранее - атомная энергия. Даже в середине тридцатых, когда до создания атомной бомбы оставалось всего ничего, лучшие физики мира утверждали, что атомную энергию использовать не удастся никогда, да и вообще что это за энергия такая? Между тем еще в 1908 году русский ученый и фантаст А.А.Богданов в романе "Красная звезда" писал о космическом корабле-этеронефе, работающем на атомной энергии.

Впрочем, достаточно перечислений. Открытия, конечно, всегда неожиданны - для тех, кто не читает фантастику. И для тех, кто не знаком с достижениями странной науки, которая рождается в наши дни - науки о том, как делаются научные открытия.

Но, прежде чем перейти к науке об открытиях, я хочу дать вам задание. Задачу на открытие. Фантасты эту задачу решают много лет, присоединитесь и вы. Представьте, что к звездам впервые отправился земной звездолет. Там нас ждут чужие разумные существа. И, если верить тому, что открытия предвидеть нельзя, то экипаж звездолета до самой встречи с иной разумной жизнью так и не сможет ее себе представить. Все произойдет совершенно неожиданно и может закончиться трагически для экипажа. Ведь, не распознав разума, можно погубить либо его, либо себя.

Как быть?

ЯЩИК ДЛЯ ЦИВИЛИЗАЦИЙ

Итак, вы (в очередной раз!) - капитан звездолета, летите к далекой планетной системе и не хотите попасть впросак. Вам известно, конечно, что у цели вас ждут неожиданные открытия, за ними вы, собственно, и летите, но все же ваша задача как капитана: свести неожиданности к минимуму. И лучше уж обойтись без открытий - от них одни сложности…

Лет десять назад, когда подобная задача была задана слушателям курсов по развитию фантазии, решение возникло почти сразу. Нужно, - сказали "студенты", - взять в полет энциклопедию фантастических разумных существ и животных. Попросту говоря, список всех фантастических существ, что были придуманы и описаны писателями-фантастами за десятки и сотни лет. Прилетаете вы на иную планету, видите в иллюминатор выходящего из леса монстра, открываете энциклопедию и говорите:

- Ага, этот жуткий экземпляр был описан в рассказе господина Икс в таком-то году. И автор предлагал использовать против него…

Скептик может сказать, что природа богаче измышлений фантастов, и вероятность встретить именно то существо, что уже описано, невелика. Согласен. Из этого следуют два вывода. Первый: чтобы помочь звездолетчикам будущего, современные авторы должны побольше и почаще писать об инопланетной жизни (желательно, не повторяя друг друга!). И второй: надо же и приемами пользоваться!

Действительно, что собой, по сути, представляет гипотетическая энциклопедия, о которой шла речь выше? Сборник всего, что написано, верно? Иными словами, писатели методом тыка придумывают чужую жизнь, следуя научным традициям - ведь и ученые, не зная ТРИЗ, делают открытия исключительно с помощью метода проб и ошибок. ТРИЗ и теория развития фантазии утверждают, что от метода тыка нужно переходить для начала к… Ну, хотя бы к элементарному морфологическому анализу. Если уж тыкаться носом в разные стороны, то лучше делать это по системе!

Что же получается? Оставим в стороне художественные достоинства фантастических книг - речь сейчас идет только об идеях. Тогда современную фантастику о внеземных цивилизациях можно смело уподобить науке со всеми ее законами. Наука исследует факты и создает гипотезы? Фантасты занимаются тем же, разница лишь в том, что факты они придумывают сами, опережая в этом науку. Наука делает открытия методом проб и ошибок? Фантасты - тоже.

Но фантасты уже поняли, насколько этот метод несовершенен, а ученые - еще нет, вот в чем разница. Фантаст, который хочет придумать новый тип инопланетных существ, рисует на бумаге клеточки морфологической таблицы, на одной оси - характеристики существ, на другой - варианты этих характеристик. И в этом "морфологическом ящике" непременно (с вероятностью почти 100 процентов!) окажутся не только существа, уже придуманные коллегами, но и те монстры, которые пока никому в голову не приходили. Число монстров ограничено только количеством клеточек таблицы и… психологической инерцией автора.

Страшная это штука - психологическая инерция. Сколько открытий запоздали на века из-за того, что ученые не искали там, где нужно и где могли! А сколько прекрасных фантастических романов не были написаны по той же самой причине! Вот пример, близкий по времени. Астрофизикам (и любителям астрономии) хорошо известна Крабовидная туманность - след взрыва Сверхновой. В середине шестидесятых годов в туманности обнаружили источник яркого рентгеновского излучения. Открытие этого излучения, как и положено открытию, было, естественно, случайным и произвело сенсацию. Но в конце шестидесятых в той же туманности был открыт радиопульсар (и опять - по чистой случайности, как и положено открытию). Тогда астрофизики спросили: а может, этот радиопульсар излучает еще и рентгеновские лучи?

Ответ на вопрос был получен в течение суток, и для этого не пришлось даже запускать ракету с приборами. Достаточно было заново обработать старые данные, которые, казалось, были уже исследованы вдоль и поперек. И рентгеновский пульсар был обнаружен.

Можно это было сделать на пять лет раньше? Можно, никто из участников эксперимента и не спорил. Почему не сделали? Да потому, что никому в голову не пришло построить морфологический ящик под названием "Крабовидная туманность". Ящик, подобный "Внеземным цивилизациям". Полную таблицу всех мыслимых вариантов. В этой таблице, как в Греции, есть все. В том числе и открытия, которые еще не были сделаны…

С оптическим пульсаром в Крабовидной туманности вышло еще неприятнее. Ну хорошо, сказали ученые, открыв рентгеновский пульсар, в Крабовидной туманности есть пульсар, излучающий радио- и рентгеновские лучи. По идее, оптическое излучение этой звездочки тоже должно пульсировать - ведь оптический диапазон расположен как раз между радио и рентгеновским. Слабенькая звездочка в Крабовидной туманности была обнаружена еще сто лет назад. Приборы, способные фиксировать быстрые изменения блеска, тоже изобретены не в прошлом году.

В ту же ночь, когда астрономам на Паломарской обсерватории пришла в голову эта идея, они направили телескоп на туманность и… Естественно, оптический пульсар был открыт. А на следующий день, отоспавшись, они заново исследовали старые (почти вековой давности!) наблюдения Краба и… Естественно, пульсар был и там, куда ж ему деться. Почему оптический пульсар в Крабовидной туманности не был открыт в 1920 году?

- Да мы просто не подумали о таком варианте, - вздохнули авторы открытия. Не подумали, и кто их будет в том винить? Когда действуешь классическим научным методом проб и ошибок, всегда о чем-то не думаешь. А ведь вся астрофизика ХХ века могла выглядеть иначе, если бы еще тогда, восемьдесят лет назад, был обнаружен оптический пульсар в Крабовидной туманности.

Изобретатели, как и ученые, многие века работали, используя метод проб и ошибок. В сороковых годах Ф.Цвикки (астрофизик, кстати, а не изобретатель) придумал морфологический метод - систему полного и целенаправленного перебора вариантов. Изобретатели пользовались морфологическим методом несколько десятилетий, пока не появился ТРИЗ. А ученые только сейчас (да и то не все и не везде) начинают понимать, что "морфологический ящик" - не досужая игра ума астрофизика. Пользуясь своим методом, Цвикки, кстати, еще в начале пятидесятых годов сделал открытие - предсказал черные дыры. Он, правда, назвал "свои" звезды адскими, но разве в названии дело?

Цвикки опубликовал книгу "Морфологическая астрономия", где и описал свой метод. Изобретатели немедленно взяли метод на вооружение, осторожные ученые лишь пожали плечами. Между тем, в книге был, к примеру, описан "морфологический ящик" под названием "Звезды". На одной оси, как положено, характеристики звезд, на другой - варианты этих характеристик. Вот, к примеру, такая характеристика звезды, как размер. Звезда размером с Солнце? Сколько угодно. Звезда размером в 100 солнц? Есть и такие - Ригель, например. А в 1000 солнц? Это красные сверхгиганты - например, Бетельгейзе. Увеличим еще - звезда размером в 10 тысяч солнц. Такие пока не открыты. Я говорю, вслед за Цвикки: пока.

Откроют и такие звезды.

Теперь давайте передвинемся по оси размеров в обратном направлении. Звезда, которая меньше Солнца в 1000 раз? Такие звезды известны - это белые карлики. А в 10 тысяч раз? Это нейтронные звезды (предсказанные, кстати, тем же Цвикки еще в 1932 году!). А в 100 тысяч раз?

Таких звезд не бывает, говорили "правильные" ученые, читая книгу Цвикки, и объясняли - почему. Дело в том, что у звезды размером в несколько километров скорость убегания должна быть больше скорости света. Возможно такое? Нет, невозможно. Значит, и звезд таких быть не может.

В 1972 году были открыты черные дыры, и оказалось, что адские звезды Цвикки все-таки существуют. Звезды размером в несколько километров и массой в десять масс Солнца. И скорость убегания для этих звезд действительно превышает скорость света. И означает это только, что даже свет не в состоянии "улететь" с такой звезды. И потому увидеть черную дыру невозможно в принципе.

А если еще уменьшить размер звезды? Пусть он будет даже не километр, а несколько сантиметров. Продвинемся еще глубже по оси размеров. Надо сказать, что даже сам Цвикки в своих таблицах так глубоко не погрузился - помешала все та же психологическая инерция.

Но мы же говорили: если взялся использовать прием, не останавливайся! Если бы Цвикки не ограничил ось в своей морфологической таблице, он еще в начале пятидесятых годов предсказал бы мини-черные дыры, остатки Большого взрыва Вселенной, "дожившие" до наших дней…

СЫГРАТЬ В ЯЩИК

Самый большой недостаток морфологического метода - искать в "ящике" действительно новое открытие все равно, что иголку в стоге сена или жемчужину в пляжном песке…

Впрочем, о недостатках потом. Давайте сначала построим ящик, а уж затем будем разбираться, насколько он хорош. Прежде всего нужна тема открытия, которое мы хотим сделать. Что-нибудь поэкзотичнее, чтобы было интереснее. Скажем, "контакты с внеземными цивилизациями". Очень актуальная тема, если учесть, сколько неопознанных летающих объектов появляется в последнее время. Ясно, что пришельцы летят к нам как утки на зимние квартиры. Как наладить с ними контакт? С самими-то "тарелками" ничего не выходит, но может, получится с теми, кто их сюда посылает?

О чем обычно рассуждают ученые, когда ведут речь о межзвездной связи? О том, как наладить контакт с помощью радио или оптического излучения. Что выгоднее использовать - лазер или радиотелескоп?

Наученные опытом, мы уже знаем, что это всего лишь две возможности, две клеточки в огромном морфологическом ящике, к строительству которого ученые даже не приступили.

Цивилизации бывают разными, и средства связи у каждой свои. Значит, прежде, чем строить ящик "межзвездная связь", нужно разобраться с ящиком "внеземные цивилизации". Оси этого ящика: среда обитания, форма объединения, структура разумных существ, направление эволюции, темп эволюции… Осей может быть много, форм цивилизаций еще больше. Возьмите-ка бумагу в клеточку и нарисуйте ящик-таблицу сами. Вы обнаружите в нем (если, конечно, подойдете к решению методически и не будете халтурить) и нас - человечество, и мыслящий океан Солярис, и многие другие формы разума, описанные и еще не описанные фантастами. Тысячи клеточек, если вы не поленились их нарисовать и обозначить, - тысячи типов цивилизаций. И каждая клеточка - это название для нового морфологического ящика "Межзвездная связь".

Вот, скажем, тот же мыслящий океан. Что для него радиосвязь? Куда более естественно для океана создавать инфразвуковые волны. Использовать для связи звук. Нет,- тут же вмешивается психологическая инерция,- звук для межзвездной связи не годится. Звуковые волны распространяются в воздухе, а между звездами воздуха нет, и следовательно…

Стоп. Так и проходят обычно ученые мимо открытий, не умея пользоваться морфологическим анализом. Ведь основное правило развития творческой фантазии: не отбрасывать никакие идеи, даже если они кажутся вам нелепыми и антинаучными. И все же - звук в межзвездной среде… Ничего невозможного. Да, газ между звездами очень разрежен - в одном кубическом сантиметре пространства находится всего один атом вещества. Газа очень мало, но ведь он есть! Есть газ, может быть и звук. И кстати, именно очень низкие частоты - инфразвук - имеют большие шансы уцелеть, пробираясь от звезды к звезде. Океан Солярис, надумав обратиться к собратьям на других планетах (по его мнению, на других планетах разум тоже, скорее всего, заключен в океанах), будет посылать в космос мощные инфразвуковые волны. Кто-нибудь пробовал искать такие волны, исследуя межзвездный газ? Никто не пробовал. Точнее говоря, есть в астрофизике такие разделы - исследование межзвездных ударных волн и исследование звуковых волн низкой частоты. Но никому еще из ученых не пришло в голову попытаться именно здесь искать следы деятельности иных цивилизаций. Ведь, действуя методом проб и ошибок, сначала ищешь там, где искать удобнее - то есть, под фонарем. Удобнее искать в радио и оптическом диапазоне; радиотелескоп сегодня - самый чувствительный астрономический прибор…

В фантастике звуковые послания давно обнаружены - почти двадцать лет назад это произошло в рассказе П.Амнуэля "Далекая песня Арктура".

А ведь это всего одна клетка из огромного морфологического ящика "Межзвездная связь". Одно из множества открытий, которые еще не сделаны. Игра продолжается…

ИГОЛКА В СТОГЕ СЕНА

А теперь - о недостатках морфологического метода. Мы уже сделали открытие в межзвездной связи, воспользовавшись морфологическим ящиком. Но нужно теперь подумать и о том, что "пустой породы" в таком ящике куда больше, чем потенциальных открытий. Если в морфологическом ящике тысячи клеточек-вариантов, то наверняка большая часть из них (возможно - подавляющая часть) просто противоречит законам природы. А как мы об этом узнаем, если не переберем все клетки, если в поисках иголки не растащим на колоски весь огромный стог сена? Для создания фантастических идей этот недостаток морфологического анализа несуществен. Может даже, это и не недостаток вовсе, а достоинство: чем идея безумнее, тем легче она ложится в основу фантастического рассказа. Но ученый относится к этой проблеме иначе: построив морфологической ящик по выбранной проблеме, он не желает перебирать клеточку за клеточкой, он хочет знать наверняка, какая клетка содержит открытие, а какая - пустую породу. Но такого правила, позволяющего наверняка определять место открытия на огромном проблемном поле, пока нет. И это одна из причин (кроме психологической инерции), почему морфологический анализ в науке так и не прижился.

Действительно, представим себя на месте физика конца прошлого века. И допустим в качестве мысленного опыта, что этот физик знает, что такое морфологический анализ. Пусть фамилия этого физика будет, скажем, Майкельсон. Да, тот самый, который измерял скорость света. Поставив свой опыт, он сел и начал строить морфологическую таблицу под названием "свет". Если он подошел к делу систематически, то в ящике обязательно можно найти клетку с надписью "скорость света - максимальна и не зависит ни от чего".

Открытие? Но, во-первых, в ящике есть множество иных клеток-вариантов, откуда Майкельсону знать - какой вариант предпочтительнее? Во-вторых, само предположение о независимости скорости света… М-м… Скорее уж Майкельсон не обратит на эту клетку внимания, будет искать в другом месте. Что он, кстати, и сделал, действуя классическим методом проб и ошибок. Чем же помог морфологический анализ? Майкельсону - ничем, он и не знал об этом изобретении Цвикки. Однако ведь и сам Цвикки сделал с помощью своего изобретения гораздо меньше открытий, чем мог.

Причина в главном недостатке морфологического метода: мы не знаем, какая клетка соответствует открытию. А перебирать все подряд… Это, конечно, лучше, чем простой перебор вариантов методом тыка, но тоже, надо сказать, удовольствие небольшое. Когда в начале шестидесятых годов открыли квазары, идеи об их природе посыпались как из рога изобилия. Идей были сотни, морфологический ящик "квазары" оказался заполнен до отказа, но… Правильная клеточка-идея была найдена лишь десятилетие спустя - для этого пришлось пройтись по всему ящику. Известные астрофизики Д. и М.Бербиджи писали в своей книге "Квазары": "Существует так много противоречивых идей относительно теории и интерпретации наблюдений, что по крайней мере 95 процентов из них неверны; однако в настоящее время никто не знает, что входит в эти 95 процентов".

Писателю-фантасту это не кажется недостатком - он напишет по рассказу на каждую идею, и ему не нужно доказывать, верна эта идея или нет. Ученый - иное дело. Ученому нужна такая методика открытий, которая исключала бы такой бесполезный поиск, бессмысленную трату ума и сил. И денег, кстати,- ведь каждая клетка ящика это научная задача, и, чтобы ее решить, нужно оборудование, сотрудники…

Нет, господа, морфологический анализ в науке оказался ровно так же неэффективен, как и в изобретательстве. Инженеры, взяв первыми на вооружение этот метод, первыми от него и отказались в середине семидесятых годов, перейдя к ТРИЗ - теории решения изобретательских задач. Ученые в этом отношении от инженеров отстают, им еще нужно доказать сначала, что морфологический анализ все-таки облегчает жизнь.

Между тем, наука об открытиях уже существует. Делает первые шаги, но ведь это - шаги новорожденного. Мы поговорим о них позднее, а пока попробуйте выполнить простенькое упражнение, проверьте свою фантазию: постройте морфологический ящик под названием "кухня". Одна ось: предметы и аппараты, стоящие на вашей кухне.

Другая ось: разные варианты этих предметов и аппаратов. И третья ось: изменения этих вариантов, их эволюция. И если вы не обнаружите в вашем ящике совершенно фантастических, но облегчающих жизнь, приборов, то ваша фантазия еще недостаточно тренирована…

Часть 10.

ДАЛЕКИЙ ИДЕАЛ

Когда на курсах по развитию фантазии преподаватель завершает рассказ об использовании морфологического метода в поиске научных открытий, кто-нибудь из слушателей непременно вносит предложение:

- Долой метод проб и ошибок и его модернизацию в виде морфологических ящиков! Даешь ТРИЗ в науке!

Хорошее, на первый взгляд, предложение. Почему бы, действительно, методы решения творческих задач, оправдавшие себя в изобретательстве, не перенести на научную почву и не начать делать открытия с такой же частотой, как хороший инженер, владеющий ТРИЗ, делает изобретения? Тем более, что не только на первый, но и на второй взгляд, в развитии научных знаний и технических систем есть явные общие закономерности.

Как развиваются технические системы? Мы это знаем - в сторону увеличения идеальности. Мечта изобретателя: ИКР - идеальный конечный результат. Создать такую машину, чтобы выполняла свою функцию, будучи невидимой и неощутимой. Конечно, это мечта, и создать такую машину можно пока только в фантастическом произведении. Обычно в ТРИЗ принцип идеальности формулируется более конкретно: техническая система тем больше близка к идеальной, чем больше функций она выполняет при меньшей расплате за их выполнение.

А разве в науке не так? Похожие принципы действуют в физике, биологии и даже психологии. Зигмунд Фрейд, например, утверждал, что психика человека ориентирована на получение максимального удовольствия при минимальной за это расплате. Не думаю, что читатель будет возражать против такого стремления к идеалу.

А знаменитая "бритва Оккама" - не умножай сущностей сверх необходимого? Идеальная научная теория - та, которая объясняет как можно больше, вводя при этом как можно меньше дополнительных предположений.

Как по-вашему, какая механика ближе к идеальной - Ньютона или Эйнштейна? Чисто интуитивно понятно, что теория Эйнштейна должна быть более идеальна, раз уж она возникла много позже ньютоновой и включила ньютонову механику как свою составную часть. Давайте разберемся. Ньютон полагал (и на этом построена его механика), что существует некое абсолютное пространство, в котором находится и движется все сущее. Эйнштейн объявил, что никакого абсолютного пространства нет в помине, и все в мире относительно. Избавившись от лишнего предположения, Эйнштейн сумел объяснить гораздо больше фактов! Вот уж действительно, прав Фрейд: больше удовольствия при меньшей расплате…

Нагляднее всего принцип идеальности виден на примере доказательства математических теорем. Это сейчас теоремы, которые наши дети доказывают в школе, формулируются так компактно, красиво и безупречно. А первые их доказательства, найденные когда-то великими Коши, Галуа, или Гельмгольцем, занимали десятки страниц, были неуклюжими как динозавры и некрасивыми как старые паровозы. Удовольствия от таких доказательств было мало, а затрат - вагон… Кстати, не только о школьных теоремах речь. Знаменитая теорема Геделя, известная любому математику, а для "нормального" читателя загадочная, как пришелец с другой планеты, будучи доказана впервые, занимала сто с лишним листов. Сейчас доказательство этой теоремы занимает одну страницу.

Два тысячелетия назад Птолемею пришлось, изображая движение планет и Солнца вокруг неподвижной Земли, рисовать систему дифферентов и эпициклов, потому что простыми окружностями объяснить сложности перемещения планет по небу он никак не мог (попробуйте сами - планеты то движутся вдоль эклиптики, то останавливаются, то описывают кольца…). Чтобы уточнять свою теорию, бедняга Птолемей вводил все больше и больше дополнительных окружностей - иными словами, уменьшал удовольствие при увеличении затрат. Двигался прочь от идеала! Уже хотя бы поэтому теория его не могла оказаться правильной.

Коперник поставил Солнце в центр, и все встало на свои места. Каждой планете - одну окружность. Все ясно и понятно. Удовольствия масса, неприятностей почти никаких. Идея Коперника просто не могла не оказаться верной.

ПРИШЕЛЬЦЫИДУТ?

Знакомый журналист сказал мне как-то:

- Послушай, ты сам себе противоречишь. В одной из своих статей по развитию фантазии ты утверждал, что пришельцев нет, и что все эти НЛО имеют какую-то неразгаданную, сложную, но естественную природу. Так?

- Так, - согласился я.

- И еще ты писал, что всякая научная теория должна стремиться быть идеальной: объяснять больше, а предположений вводить меньше. Согласись, что идея пришельцев объясняет НЛО сразу и гораздо проще, чем всякие атмосферные явления, о которых никто из ученых ничего толком сказать не может. Гипотеза о пришельцах гораздо идеальнее всякой другой - единственное предположение, а объясняет сразу все! Если принять во внимание, что в последнее время НЛО стали частыми гостями, спор наш приобрел особую актуальность. Казалось бы, журналист прав: пришельцы - вот объяснение, самое простое и, главное, понятное каждому.

А теперь давайте разберемся, насколько оно идеально, и тогда мы поймем, почему ученые в большинстве своем относятся к пришельцам с очевидной неприязнью.

Итак, чем должно отличаться идеальное научное объяснение факта? Вводя минимум новых предположений, объяснять факт. И при этом, заметьте, не создавать, по возможности, новых загадок, для решения которых нужно будет вводить новые предположения!

Когда ученый утверждает, что большую часть НЛО можно объяснить, например, разными видами шаровых молний, он вообще не вводит новых идей. А если и вводит (мы же не знаем пока, может ли шаровая молния вызывать у людей галлюцинации), то надеется разобраться в этом феномене с помощью известных физических законов. Когда уфолог утверждает "это пришельцы", он вводит фактор, представляющий собой абсолютную загадку! Одну загадку он объясняет другой, еще более странной. Что знаем мы о гипотетических пришельцах? Да ничего не знаем… Или наоборот, знаем столько, что знание это лишается всякого смысла.

Есть пришельцы высокие, есть маленькие, есть зеленые с хвостиком, есть белые с тремя глазами, есть… Похоже, что разных пришельцев на Земле больше, чем тараканов! И все они поступают на удивление однообразно (а ведь явились с разных миров!): утверждают, что земляне еще не готовы вступить в галактическое братство, контакты все еще преждевременны (если это так, то зачем раньше срока пришельцы показывают себя первому встречному?), и что люди должны вести себя хорошо…

Господа, вот вам задача на развитие фантазии: перечитайте многочисленные рассказы "контактеров" и попробуйте определить, с помощью какого приема (из числа нам известных) все это можно сконструировать. Пришелец с тремя глазами - прием увеличения. Пришелец высотой три метра - тот же прием. Пришелец ростом в карандаш - прием уменьшения…

А то, что пришельцы вдалбливают в головы "контактерам" - разве это не набор банальностей, каждая из которых и без вмешательства иных сил вполне ясна? Вот уж действительно, стоило ли лететь за сотни парсеков, чтобы явиться какому-то случайному пешеходу и сказать: "Передай вашим, чтобы вели себя хорошо, а то в братство цивилизаций не примем"?

"Железный", казалось бы, довод уфологов: а чем, скажите на милость, объяснить в таком случае, странные явления в знаменитом Энском треугольнике на Урале? Или нападения НЛО на самолеты? Или исчезновения людей? Наконец, странные объекты в небе - что это такое? "Всего лишь" атмосферное электричество?

Да, всего лишь. И хотя об атмосферных явлениях нам еще многое не известно, но эта идея куда ближе к "идеальной теории", чем идея о нашествии пришельцев на Землю.

Чтобы удостовериться в этом, попробуйте сами встать на место пришельца. Вы прилетели на другую планету, обнаружили на ней разумную жизнь, с которой не желаете вступать в контакт. Ваши действия?

Используйте все приемы фантазирования, какие знаете. И скажите, положа руку на сердце: станете вы посылать на тамошние Москву, Киев, Воронеж и прочие города и страны сотни и тысячи "тарелочек", если считаете, что говорить вам решительно не о чем?..

ВСЕ ТЕ ЖЕ ПРОТИВОРЕЧИЯ

Если в технической системе нет никаких противоречий, то в ней нечего изобретать. Она достигла своего идеала и, следовательно… такую систему нужно срочно выбрасывать на свалку истории.

О, эти противоречия! Кажется, что они только усложняют жизнь, но попробуйте представить мир, в котором все противоречия устранены раз и навсегда, и вам наверняка захочется бежать из такого мира, не оглядываясь. Представьте себе свою семейную жизнь без противоречий. Вы говорите "а" и слышите в ответ "конечно", она говорит "б", и вы полностью соглашаетесь. Никакого различия во взглядах, даже по мелочам. Все одно и то же… Сегодня, завтра, всегда… Развод, срочно развод!

Короче говоря, жизнь без противоречий скучна и пресна, а техника с наукой без противоречий просто немыслимы. И хорошее, развитое воображение обязано уметь в любом явлении, в любой вещи углядеть свойственные им противоречия. Сначала - углядеть. Второй этап - суметь от этого противоречия избавиться. Приблизить вещь к идеалу. А поскольку идеал, как мы знаем, недостижим, то что нужно сделать на следующем этапе? Естественно, найти противоречие в том, что нам удалось нафантазировать…

Мы уже умеем (надеюсь!) пользоваться приемами фантазирования. Помните, я говорил, что прием нужно использовать до тех пор, пока не возникнет некое новое качество? Уточню: речь шла именно о противоречиях. Вот задача, которую мы решали уже много раз: придумать фантастическое растение. Прием - увеличение. Будем увеличивать, допустим, обыкновенную ель. Ель размером в сто метров. Представили? Отлично. Триста метров. Никаких проблем? Плохо, значит, ваше воображение еще недостаточно развито. Можно (что в том трудного?) вообразить ель размером с орбиту Земли, но если вы при этом не увидели десяток противоречий, то зачем нужно было приниматься за дело?

Итак, есль размером в триста метров. Такое дерево становится слишком тяжелым для своих корней. Можно, конечно, представить, как корни проникают на все большую глубину, но… Вот оно, противоречие, дающее пищу для фантазии. Кончается слой почвы, начинаются скалы, куда корни проникнуть не могут. Получается, что корень огромной ели должен обладать одновременно двумя противоречащими друг другу свойствами. Он должен уходить вглубь (чтобы поддержать огромный ствол) и должен остаться близко к поверхности (чтобы находиться в пределах слоя почвы).

Что делать?

А это зависит от вашей фантазии. И от знания приемов тоже, естественно.

Противоречивые свойства должны быть разделены. Как? Либо в пространстве, либо во времени. Давайте сначала разделим их в пространстве. То есть, наша фантастическая трехсотметровая ель должна обладать двумя корнями. Один корень будет уходить вглубь и удерживать дерево от падения. А второй будет расти вширь и питать ель почвенными водами и другими необходимыми для дерева веществами. А если разделить свойства во времени? Пожалуйста. Дерево отрастило себе динамичный корень: сегодня он уходит вглубь и поддерживает ель, а завтра распространяется вширь и питает ель нужными веществами.

Но, - скажете вы, - опять противоречие. Если сегодня корень уходит вглубь, дерево будет стоять, но питаться не сможет и засохнет, а завтра корень раздастся вширь, появится пища, но дерево упадет…

Ну и отлично! Ведь нам и нужна фантастическая ель. Пусть так и будет - сегодня она лежит и питается, а завтра, насытившись на неделю вперед, поднимает ствол и устремляется за облака.

Впрочем, наш разговор сейчас о науке. Надеюсь, что вы и сами сумеете вспомнить не одно научное противоречие. Вот пример. Галилей утверждал, что все движения относительны, если они происходят равномерно и прямолинейно. Невозможно выделить какую-то одну систему, которая, допустим, всегда была бы в покое. Но вот сто лет назад Майкельсон измерил скорость света и показал, что она всегда одинакова - относительно любого прибора и любой системы отсчета. Возникло противоречие:

относительность есть (это доказал Галилей) и ее нет (по утверждению Майкельсона). Понадобился гений Эйнштейна, чтобы разрешить это противоречие и придумать частную теорию относительности.

Интересно, сумел бы разрешить это противоречие сам Майкельсон, если бы он знал основы теории воображения?

ЗАДАТЬ ВОПРОС

Самые интересные фантастические идеи, самые замечательные проявления воображения возникают тогда, когда приходится преодолевать какое-то противоречие. Надеюсь, что убедил вас в этом, приведя пример с фантастическим растением. Если нет противоречия - нет и стимула для фантазии.

В ТРИЗ существует немало приемов, позволяющих избавиться от противоречия (и, естественно, получить на свою голову новое - как же иначе?). Годятся эти приемы и для решения задач по развитию фантазии. А в науке?

Инженер, сделав изобретение, изменяет прибор, инструмент, механизм - получает нечто новое, чего вчера еще не существовало. Фантаст, придумав идею, способен создать в воображении новые миры. Но ведь ученый имеет дело с природой, которая существовала всегда и в которой от того, что ученый сконструировал новую теорию, ровно ничего не изменилось. Наука меняет не объект исследований, но информацию о нем. Что изменилось в природе от того, что в метеорите, прилетевшем с Марса, обнаружены следы жизни? С Марсом не произошло решительно ничего, с метеоритом - тоже. Изменилось наше знание о мире, изменилась информация.

Ученые задают природе свои вопросы и пытаются понять ответы. Нужно иметь развитое воображение для того, чтобы понять язык природы. Но не меньшую фантазию нужно иметь для того, чтобы задать природе правильный вопрос. "Правильным" же вопрос может быть только в одном случае - если он связан с определенным научным противоречием.

Вы наверняка встречались с выражением: "Чтобы правильно задать вопрос, нужно хотя бы наполовину знать ответ". По сути, эти иная формулировка того, о чем говорилось выше.

Когда Эйнштейн "спросил" у природы, может ли материальное тело двигаться быстрее света, великий физик наверняка уже подозревал, что ответ будет отрицательным. Это был правильный вопрос, и на него был получен правильный ответ. Знаете, почему?

Во-первых, существовало противоречие (между опытом Майкельсона и известными физическими теориями).

Во-вторых, в морфологическом ящике "скорость света" существовало всего две (вот редкий случай!) клеточки. Одна "скорость света зависит от системы отсчета", и вторая: "скорость света ни от чего не зависит". Причем первую клеточку уже успел исследовать Майкельсон и доказать, что реальности она не соответствует.

По сути, у Эйнштейна не было выбора - он должен был "задать" природе именно этот вопрос, и он этот вопрос задал. Ответ не замедлил появиться.

Но почему к такому же выводу не смогли придти современ<



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: