Нанотехнологии в информационных технологиях




Новые технологии производства компьютеров

 

 


Введение

 

Человечество во все времена стремилось улучшить условия своего существования. Теперь большинство из нас уже не может представить себе жизнь без современных благ цивилизации, достижений науки, техники, медицины. Следующим шагом в этом развитии станет освоение нанотехнологий, в частности, систем очень малого размера, способных выполнять команды людей.

Нанотехноло́гия - междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

В отличие от традиционных технологий нанотехнологии характеризуются повышенной наукоёмкостью и затратностью, а также междисциплинарностью и неэффективностью решения задач методом «проб и ошибок».

Технический прогресс направлен в сторону разработки более мощных, быстрых, компактных и изящных машин. Пределом такого развития можно считать машины, размером с молекулу.

Актуальность темы обусловлена значимостью нанотехнологий в нашей жизни, в глобальных масштабах мирового общества.

Слово компьютер происходит от английского слова «computer» что означает вычислитель. А это значит что компьютер ничто иное как машина для проведения вычислений. Однако в настоящее время полагают, что основные функции компьютеров - обработка и управление информацией. С помощью этих самых вычислений компьютер обрабатывает информацию по заранее определённому алгоритму. Большинство компьютеров могут сохранять информацию и осуществлять с ней какие либо действия, например выводить её (информацию) на различные виды устройств предназначенных для вывода информации (монитор, принтер и т.д.).

Наибольшее распространение среди компьютеров получили так называемые «электронно-вычислительные машины», ЭВМ. Собственно, для подавляющего большинства людей, слова «электронно-вычислительные машины» и «компьютеры» стали словами-синонимами, хотя на самом деле это не так. Наиболее распространённый тип компьютеров - электронный персональный компьютер.

 

 


Основные положения нанотехнологий

Понятие нанотехнологий

 

Технологией называется совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката, осуществляемых в процессе производства продукции.

Нанотехнология - высокотехнологичная отрасль, работающая с отдельными атомами и молекулами. Такая сверхточность позволяет на качественно новом уровне использовать законы природы на благо человека - создавать продукты с заданной атомарной структурой, поэтому разработки в области нанотехнологий находят применение практически в любой отрасли: в медицине, машиностроении, электронике, экологии… С помощью нанотехнологии можно очищать нефть, победить многие вирусы, создавать роботов, защищать природу, построить сверхбыстрые компьютеры.

Нанотехнология - область науки и техники, занимающаяся изучением свойств частиц и созданием устройств, имеющих размер порядка нанометра. Приставка нано- - приставка СИ (метрической системы единиц), означающая одну миллиардную долю чего-либо, соответственно один нанометр = 10-9 метров. Также нанотехнологию иногда определяют как технологию манипулирования отдельными атомами и молекулами. Этот раздел нанотехнологии также называется «Молекулярной нанотехнологией», это весьма перспективный и многообещающий раздел. Нанотехнология ныне находится в начальной стадии развития, поскольку основные открытия, предсказываемые в этой области, все еще не сделаны. Тем не менее, проведенные исследования уже сейчас дают практические результаты. За применение передовых научных исследований нанотехнологию относят к высоким технологиям.

При работе с такими малыми размерами проявляются квантовые эффекты и эффекты межмолекулярных взаимодействий, такие как Ван-дер-Ваальсовы взаимодействия. Нанотехнология, и в особенности молекулярная технология - новые области, очень мало исследованные. Развитие современной электроники идёт по пути уменьшения размеров устройств. Однако классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается не на много, зато экономические затраты возрастают экспоненциально. Само понятие «нанотехнология» было введено японцем Норио Танигучи (Norio Taniguchi) в 1974, он предложил называть так технологии и механизмы, размером менее одного микрона, а также дал краткое определение нанотехнологии, как: междисциплинарной, образующей технологии, позволяющей «технологично» (воспроизводимо, по описанным процедурам) производить исследования, манипуляцию и обработку вещества в диапазоне размеров и с допусками 0,1/100 нм.

Нанотехнологии смогут помочь человечеству достигнуть очень амбициозных (даже фантастических) задач:

· создание новейших промышленных технологий на атомарном и молекулярном уровнях;

· твердых тел и поверхностей (материалов и пленок) с измененной молекулярной структурой, что даст сверхпрочные металлы, ткани, пластмассы; самовосстанавливающиеся материалы;

· новых химических веществ посредством составления из молекул, т.е. без химических реакций;

· логических наноэлементов и нанокомпьютеров (миниатюризация и повышение вычислительной мощности компьютеров), и сверхпроводников нового типа (сверххолодных);

· вычислительных устройств на белковых молекулах;

· искусственных аналогов живых организмов (растений и животных);

· нанороботов, наномашин (нанодвигателей), прецизионных (точных) наноманипуляторов;

· роботов-врачей для имплантации в организм (для устранения генетических и физиологических повреждений на клеточном и надклеточном уровнях);

· нанороботов, наномашин (нанодвигателей), прецизионных (точных) наноманипуляторов;

· разработка самореплицирующихся (саморазмножающихся) систем на базе биоаналогов - бактерий, вирусов, простейших;

Особенность нанотехнологии заключается в том, что рассматриваемые процессы и совершаемые действия происходят в нанометровом диапазоне пространственных размеров. «Сырьем» являются отдельные атомы, молекулы, молекулярные системы, а не привычные в традиционной технологии микронные или макроскопические объемы материала, содержащие, по крайней мере, миллиарды атомов и молекул. В отличие от традиционной технологии для нанотехнологии характерен «индивидуальный» подход, при котором внешнее управление достигает отдельных атомов и молекул, что позволяет создавать из них как «бездефектные» материалы с принципиально новыми физико-химическими и биологическими свойствами, так и новые классы устройств с характерными нанометровыми размерами.

В силу того, что нанотехнология - междисциплинарная наука, для проведения научных исследований используют те же методы что и «классические» биология, химия, физика. Одним из основных методов исследования в области нанотехнологии является сканирующая зондовая микроскопия. В настоящее время в исследовательских лабораториях используются не только «классические» зондовые микроскопы, но и СЗМ в комплексе с оптическими микроскопами, электронными микроскопами, спектрометрами комбинационного (рамановского) рассеяния и флюоресценции, ультрамикротомами (для получения трехмерной структуры материалов).

Анализ текущего состояния бурно развивающейся области нанотехнологий, позволяет выделить в ней ряд важнейших направлений:

Молекулярный дизайн. Препарирование имеющихся молекул и синтез новых молекул в сильно неоднородных электромагнитных полях.

Материаловедение. Создание «бездефектных» высокопрочных материалов, материалов с высокой проводимостью.

Приборостроение. Создание сканирующих туннельных микроскопов, атомно-силовых микроскопов, магнитных силовых микроскопов, многоострийных систем для молекулярного дизайна, миниатюрных сверхчувствительных датчиков, нанороботов.

Электроника. Конструирование нанометровой элементной базы для ЭВМ следующего поколения, нанопроводов, транзисторов, выпрямителей, дисплеев, акустических систем.

Оптика. Создание нанолазеров. Синтез многоострийных систем с нанолазерами.

Гетерогенный катализ. Разработка катализаторов с наноструктурами для классов реакций селективного катализа.

Медицина. Проектирование наноинструментария для уничтожения вирусов, локального «ремонта» органов, высокоточной доставки доз лекарств в определенные места живого организма.

Трибология. Определение связи наноструктуры материалов и сил трения и использование этих знаний для изготовления перспективных пар трения.

Управляемые ядерные реакции. Наноускорители частиц, нестатистические ядерные реакции.

 

Нанотехнологии в информационных технологиях

 

В развитых зарубежных странах нанотехнологиям уделяется большое внимание - создаются исследовательские институты, развернута подготовка специалистов. В США этими вопросами занимаются такие известные фирмы, как Intel, MEMS Industry Group, Sandia National Labs. Рассматриваемый круг вопросов - от ручки без разбрызгивания чернил до беспроволочной передачи данных, оптических устройств управления оружием и миниспутников. Агентство перспективных разработок МО США реализует программу «Умная пыль», направленную на создание сверхминиатюрных устройств, способных генерировать энергию, проводить мониторинг окружающей среды, накапливать и передавать информацию.

Очень значимое достижение в области нанотехнологий - создание ядра операционной системы.

Ядро - центральная часть операционной системы (ОС), обеспечивающая приложениям координированный доступ к ресурсам компьютера, таким как процессорное время, память и внешнее аппаратное обеспечение. Также обычно ядро предоставляет сервисы файловой системы и сетевых протоколов.

На данное время уже выпущены операционные системы на основе 2, 4 и 6 ядер.

Так же, ученые из Пердью (штат Индиана, США) явили миру новый теплоотводный интерфейс, призванный защищать микросхемы будущего от перегрева. Ученые решили отказаться от традиционного интерфейса на мазевой основе, содержащей мелкие металлические частицы. Вместо этого они предложили выращивать теплоотводные элементы прямо на поверхности микросхемы. В результате поверхность чипа покрывалась целым лесом наноскопических углеродных нанотрубочек, которые и представляли собой основу нового теплоотводного интерфейса. Для выращивания нанолеса на поверхности полупроводника были нанесен рисунок с использованием специальных шаблонов из молекул с разветвленной цепью, именуемых дендримерами (dendrimers). Затем в точках разветвления рисунка были размещены частицы-катализаторы роста углеродных трубочек, выполненные из переходных металлов: железа, никеля, кобальта или палладия диаметром порядка 10 нм. Обработанные катализаторами полупроводники помещались в камеру с метановой атмосферой, где и происходил собственно процесс «выращивания» углеродных нанотрубок с диаметром, стремящимся к таковому частиц-катализаторов.

С точки зрения разработчиков, похожий на ковровое покрытие, углеродный нанолес превосходит по эффективности современные теплоотводящие материалы на мазевой основе. Еще одно неоспоримое преимущество новой технологии - отсутствие необходимости в «чистой комнате», т.е. процесс производства не требует создания специальных стерильных условий, что, несомненно, способствует скорейшему внедрению новой технологии в коммерческое производство.




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: