Радиоактивные превращения.




Лекция Физика атомного ядра. Радиоактивный распад..

После опытов Резерфорда, прояснивших устройство атома, возник естественный вопрос: из чего состоит атомное ядро? Ответа пришлось ждать двадцать лет - до открытия нейтрона.

Ядро самого простого атома водорода, как вы помните, было названо протоном. Протон имеет положительный заряд Кл (равный по модулю заряду электрона) и массу кг. Масса протона примерно в 1836 раз больше массы электрона.

Нейтрон был открыт в 1932 году английским физиком Джеймсом Чедвиком. Масса нейтрона кг оказалась очень близка к массе протона. Однако, в отличие от протона, нейтрон не имеет электрического заряда.

Открытие нейтрона послужило ключом к пониманию устройства атомного ядра.

Нуклонная модель ядра.

Сразу после открытия нейтрона несколько физиков одновременно высказали идею протонно-нейтронной, или нуклонной, модели ядра. Согласно этой модели, ядро состоит из протонов и нейтронов. Будучи "кирпичиками", из которых строится ядро, протоны и нейтроны получили общее название нуклонов. (От лат. nucleus - ядро.)

Модель атомного ядра показана на рис. 1. Красным цветом условно изображены протоны, чёрным - нейтроны.

Рис. 1. Модель ядра атома

Число протонов в ядре называется зарядовым числом и обозначается Z. Заряд ядра, следовательно, равен Ze. Поскольку атом в целом электрически нейтрален, величина Z совпадает с числом электронов в атоме. Зарядовое число, таким образом, есть не что иное, как порядковый номер химического элемента в таблице Менделеева.

Общее число нуклонов в ядре называется массовым числом и обозначается A. Число нейтронов в ядре тогда будет равно A-Z.

Запись означает, что в ядре элемента X содержится A нуклонов, из которых Z являются протонами. Например, ядро алюминия состоит из 27 нуклонов, а именно из 13 протонов и 14 нейтронов. Ядро гелия - так называемая -частица - состоит из двух протонов и двух нейтронов.

Изотопы.

Что будет, если изменить число нейтронов ядре? Какие-то свойства вещества в результате должны поменяться - например, плотность. Однако все химические свойства при этом останутся прежними - ведь за них отвечает зарядовое число Z, а оно-то не менялось!

Изотопы - это разновидности одного и того же химического элемента, различающиеся числом нейтронов в ядре.

Например, у водорода три изотопа: обычный , дейтерий и тритий . А химический элемент уран имеет 26 изотопов! В природе наиболее распространён уран , а в атомной энергетике и ядерном оружии используется уран .

Изотопы совершенно идентичны в отношении химических свойств, и их невозможно разделить никакими химическими методами. Оказывается, почти любой элемент таблицы Менделеева представляет собой смесь изотопов в различных пропорциях - вот почему атомные массы химических элементов не равны целым числам. Как правило, атомная масса всё же достаточно близка к целому числу, поскольку в природе доминирует изотоп именно с такой атомной массой (например, в природном уране доля изотопа составляет 93%; соответственно, в таблице Менделеева мы видим атомную массу урана, равную 238,03). Но бывают и исключения: так, атомная масса хлора равна 35,5.

Радиоактивность

Явление радиоактивности обнаружил французский физик Анри Антуан Беккерель, и произошло это совершенно случайно.

В начале 1896 года всё научное сообщество было охвачено интересом к недавно открытым всепроникающим рентгеновским лучам. Беккерель решил выяснить, не появляются ли рентгеновские лучи при освещении солнечным светом некоторых минералов, и выбрал для своих экспериментов весьма редкую соль урана.

Опыт Беккереля был чрезвычайно прост. Кристаллы соли выставлялись на солнце и лежали при этом на фотопластинке. Разумеется, фотопластинка заворачивалась в чёрную бумагу, чтобы её не засветил солнечный свет. Но чёрная бумага - не помеха рентгеновским лучам, и если они действительно возникают, то засветят фотопластинку.

Итак, Беккерель положил завёрнутую фотопластинку с насыпанной поверх урановой солью на солнечный свет, подержал несколько часов и затем проявил фотопластинку. Ожидания подтвердились! После проявления на фотопластинке проступили очертания кристаллов соли урана.

Полагая, что и впрямь обнаружись рентгеновские лучи, испускаемые урановой солью под действием солнечного света, Беккерель доложил об этом на заседании Французской академии. Доклад вызвал большой интерес, и было решено, что на следующем заседании, то есть через неделю, Беккерель расскажет о результатах новых опытов.

А погода тем временем испортилась, и солнце на всю неделю скрылось за облаками. Медный крест, покрытый урановой солью и приготовленный для опытов, в ожидании солнца несколько дней пролежал в ящике письменного стола - поверх фотопластинки, завёрнутой в чёрную бумагу.

Накануне нового доклада облачность так и не рассеялась, и докладывать Беккерелю было нечего. Однако отчаяние и удачу порой разделяет лишь один шаг. Неизвестно почему, но Беккерель решил проявить фотопластинку, лежавшую в столе. Каково же было его удивление, когда он увидел проступившие на ней почернения в виде отчётливой тени креста!

Таким образом, солнце оказалось совершенно ни при чём. Было обнаружено новое явление природы: урановая соль без каких-либо внешних факторов, сама по себе испускает некоторое излучение, пронизывающее чёрную бумагу.

На следующий день Беккерель доложил об этом на заседании Французской академии и затем приступил к интенсивным исследованиям. В ходе своих экспериментов он обнаружил следующие черты нового явления.

· -Новые лучи могут проникать сквозь предметы и ионизировать воздух.

· -Засвечивают фотопластинку только те вещества, которые содержат уран.

· -Интенсивность излучения зависит только от количества урана в веществе. Само химическое соединение при этом роли не играет. Максимально интенсивным является излучение чистого урана.

Новое явление было впоследствии названо радиоактивностью. Из опытов Беккереля следовало, что радиоактивность есть свойство химического элемента урана самого по себе - то есть свойство, которым обладают атомы урана.

Уран оказался не единственным радиоактивным элементом. Мария Склодовская-Кюри спустя два года после открытия Беккереля обнаружила аналогичное излучение тория. Вместе с мужем, Пьером Кюри, они открыли новый радиоактивный химический элемент - полоний. Наконец, вручную переработав 11 тонн руды, Мария Склодовская-Кюри получила маленькую капельку чистого радия, который излучал в три миллиона раз интенсивнее урана.

Оказалось, что радиоактивные вещества испускают три типа лучей, различающихся по своим физическим свойствам. Эти три компоненты обнаруживаются в результате пропускания радиоактивного излучения солей урана через сильное магнитное поле (рис. 2).

Рис. 2. Виды радиоактивных излучений

А именно, излучение радиоактивного препарата, находящегося внутри свинцового контейнера с узким каналом, направляется на фотопластинку. В отсутствии магнитного поля на фотопластинке наблюдается одно тёмное пятно. Но если пропустить излучение сквозь область магнитного поля, то пятен становится три - одно на прежнем месте и два по бокам от него на разных расстояниях. Это означает, что радиоактивное излучение в магнитном поле распалось на три существенно различные части.

То, что две компоненты отклонились в разные стороны, означает, что они являются соответственно потоками положительных и отрицательных зарядов. Третья компонента, не отклоняющаяся магнитным полем, электрического заряда не несёт.

Положительно заряженной компоненте была присвоена буква ; её называли -излучением, -лучами или потоком -частиц. Альфа-лучи достаточно слабо отклонялись магнитным полем. Тщательные исследования Резерфорда показали, что -частицы — это полностью ионизованные атомы гелия, то есть ядра гелия.

Отрицательно заряженная компонента была названа -излучением (или -лучами). Они отклонялись магнитным полем значительно сильнее, чем -частицы. Бета-лучи оказались потоком электронов, мчащихся со скоростями, близкими к скорости света.

Нейтральная компонента получила название -излучения (или -лучей). (Электромагнитная природа гамма-излучения была установлена экспериментально: обнаружилась дифракция гамма-лучей на кристаллических решётках. Эти же опыты позволили измерить и длину волны гамма-излучения. Гамма-лучи оказались электромагнитными волнами чрезвычайно высокой частоты - выше, чем у рентгеновского излучения.) Соответственно, проникающая способность гамма-лучей также больше, чем у рентгеновских лучей.

Радиоактивные превращения.

Многочисленные эксперименты с радиоактивными веществами показали, что радиоактивность сопровождается изменениями атомов, и в результате этих изменений одни химические элементы превращаются в другие.

В процессе радиоактивного распада исходное вещество постепенно исчезает. Новые вещества, являющиеся продуктами распада, также могут быть нестабильными и распадаться дальше. Наблюдаются целые цепочки радиоактивных распадов - вплоть до образования стабильных элементов.

Самой известной такой цепочкой является радиоактивное семейство урана. Начинается эта цепочка с альфа-распада ядра , в результате которого образуется ядро тория и вылетает -частица:

. (1)

Затем родившееся ядро тория испытывает бета-распад, испуская электрон и превращаясь в ядро протактиния :

. (2)

Правило смещения. После -распада элемент смещается на две клетки назад, то есть к началу периодической системы. После -распада элемент смещается на одну клетку вперёд, то есть к концу периодической системы.

Общие формулы, выражающие правило смещения при альфе- и бета-распадах, выглядят так:

,

.

Формулы (1) и (2) - это самое начало радиоактивного семейства урана. Всего в этой цепочке происходит восемь -распадов и шесть -распадов (причём при каждом -распаде вдобавок излучается -квант), пока в самом конце цепочки не образуется стабильное ядро свинца .

Период полураспада - это время, в течение которого распадается половина имеющихся радиоактивных атомов. Период полураспада как раз и является количественной характеристикой скорости радиоактивного распада.

Закон радиоактивного распада:

.

Ясно, что активность убывает тем быстрее, чем меньше период полураспада. И наоборот, при большом периоде полураспада активность меняется медленно. Например, активность радона (T= 3,8 суток) уменьшается буквально на глазах, а активность солей урана (T= 4,5 млрд.лет) остаётся практически неизменной на протяжении человеческой жизни.

График зависимости активности от времени приведён на рис. 3.

Ядерные силы.

До сих пор мы знали два типа взаимодействий в природе - гравитационные и электромагнитные. Ядерные силы служат проявлением нового, третьего по счёту типа взаимодействий - сильного взаимодействия. Мы не будем вдаваться в механизм возникновения ядерных сил, а лишь перечислим их наиболее важные свойства.

 

Рис. 2. Зависимость активности от времени

1. Ядерные силы действуют между любыми двумя нуклонами: протоном и протоном, протоном и нейтроном, нейтроном и нейтроном.

2. Ядерные силы притяжения протонов внутри ядра примерно в 100 раз превосходят силу электрического отталкивания протонов. Более мощных сил, чем ядерные, в природе не наблюдается.

3. Ядерные силы притяжения являются короткодействующими: радиус их действия составляет около м. Это и есть размер ядра - именно на таком расстоянии друг от друга нуклоны удерживаются ядерными силами. При увеличении расстояния ядерные силы очень быстро убывают; если расстояние между нуклонами станет равным м, ядерные силы почти полностью исчезнут.

На расстояниях, меньших м, ядерные силы становятся силами отталкивания.

Сильное взаимодействие относится к числу фундаментальных - его нельзя объяснить на основе каких-то других типов взаимодействий. Способность к сильным взаимодействиям оказалась свойственной не только протонам и нейтронам, но и некоторым другим элементарным частицам; все такие частицы получили название адронов. Электроны и фотоны к адронам не относятся - они в сильных взаимодействиях не участвуют.

Ядерные реакции

Резерфорд подверг бомбардировке ядра азота и в результате осуществил первую в истории физики ядерную реакцию:

В правой части (1) мы видим продукты реакции — изотоп кислорода и протон.

Стало ясно, что для изучения ядерных реакций нужно располагать частицами-снарядами высоких энергий. Такую возможность дают ускорители элементарных частиц.

Деление ядер. Бомбардируя ядра урана медленным нейтронами, немецкие физики Ган и Штрассман обнаружили появление элементов средней части периодической системы: бария, криптона, стронция, рубидия, цезия и т. д. Так было открыто деление ядер урана.

На рис. 3 мы видим процесс деления ядра (изображение с сайта oup.co.uk.). Захватывая нейтрон, ядро урана делится на два осколка, и при этом освобождаются два-три нейтрона.

Рис. 3. Деление ядра урана

Из-за большого числа протонов ( штуки), упакованных в ядре урана, кулоновские силы отталкивания, распирающие ядро, очень велики. Ядерные силы, конечно, ещё в состоянии удерживать ядро от распада, но могучий кулоновский фактор готов сказать своё слово в любой момент. И такой момент настаёт, когда в ядре застревает нейтрон (рис. 4).

Рис. 4 Деформация, колебания и разрыв ядра

Застрявший нейтрон вызывает деформацию ядра. Начнутся колебания формы ядра, которые могут стать столь интенсивными, что ядро вытянется в «гантельку». Короткодействующие ядерные силы, скрепляющие небольшое число соседних нуклонов перешейка, не справятся с силами электрического отталкивания половинок гантельки, и в результате ядро разорвётся.

Цепная ядерная реакция. Появление двух-трёх нейтронов в процессе деления ядра урана — важнейший факт. Эти нейтроны «первого поколения» могут попасть в новые ядра и вызвать их деление; в результате деления новых ядер возникнут нейтроны «второго поколения», которые попадут в следующие ядра и вызовут их деление; возникнут нейтроны «третьего поколения», которые приведут к делению очередных ядер и т. д. Так идёт цепная ядерная реакция, в ходе которой высвобождается колоссальное количество энергии.

Для протекания цепной ядерной реакции необходимо, чтобы число высвободившихся нейтронов в очередном поколении было не меньше числа нейтронов в предыдущем поколении. Величина

называется коэффициентом размножения нейтронов. Таким образом, цепная реакция идёт при условии . Если , то цепная реакция не возникает.

В случае происходит лавинообразное нарастание числа освобождающихся нейтронов, и цепная реакция становится неуправляемой. Так происходит взрыв атомной бомбы.

В ядерных реакторах происходит управляемая цепная реакция деления с коэффициентом размножения . Стационарное течение управляемой цепной реакции обеспечивается введением в активную зону реактора (то есть в ту область, где протекает реакция) специальных управляющих стержней, поглощающих нейтроны. При полностью введённых стержнях поглощение ими нейтронов настолько велико, что и реакция не идёт. В процессе запуска реактора стержни постепенно выводят из активной зоны, пока выделяемая мощность не достигнет требуемого уровня. Этот уровень тщательно контролируется, и при его превышении включаются устройства, вводящие управляющие стержни назад в активную зону.

Термоядерная реакция. Наряду с реакцией деления тяжёлых ядер энергетически возможным оказывается и обратный в некотором смысле процесс — синтез лёгких ядер, то есть слияние ядер лёгких элементов (расположенных в начале периодической таблицы) с образованием более тяжёлого ядра.

Чтобы началось слияние ядер, их нужно сблизить вплотную — чтобы вступили в действие ядерные силы. Для такого сближения нужно преодолеть кулоновское отталкивание ядер, резко возрастающее с уменьшением расстояния между ними. Это возможно лишь при очень большой кинетической энергии ядер, а значит — при очень высокой температуре (в десятки и сотни миллионов градусов). Поэтому реакция ядерного синтеза называется термоядерной реакцией.

В качестве примера термоядерной реакции приведём реакцию слияния ядер дейтерия и трития (тяжёлого и сверхтяжёлого изотопов водорода), в результате которой образуется ядро гелия и нейтрон:

Таким образом, термоядерные реакции служат источником ещё большего количества энергии, чем реакции деления ядер. С физической точки зрения это понятно: энергия реакции ядерного деления есть в основном кинетическая энергия осколков, разогнанных электрическими силами отталкивания, а при ядерном синтезе энергия высвобождается в результате разгона нуклонов навстречу друг другу под действием куда более мощных ядерных сил притяжения.

Проще говоря, при делении ядер высвобождается энергия электрического взаимодействия, а при синтезе ядер — энергия сильного (ядерного) взаимодействия.

В недрах звёзд достигаются температуры, подходящие для синтеза ядер. Свет Солнца и далёких звёзд несёт энергию, выделяющуяся в термоядерных реакциях — при слиянии ядер водорода в ядра гелия и последующем слиянии ядер гелия в ядра более тяжёлых элементов, расположенных в средней части периодической системы. Направление термоядерного синтеза показано на рис. 4; синтез лёгких ядер энергетически выгоден, так как направлен в сторону увеличения удельной энергии связи ядра.

Неуправляемая термоядерная реакция осуществляется при взрыве водородной бомбы. Сначала взрывается встроенная атомная бомба — это нужно для создания высокой температуры на первой ступени термоядерного взрыва. При достижении необходимой температуры в термоядерном горючем бомбы начинаются реакции синтеза, и происходит взрыв собственно водородной бомбы.

Осуществление управляемой термоядерной реакции остаётся пока нерешённой проблемой, над которой физики работают уже более полувека. Если удастся добиться управляемого течения термоядерного синтеза, то человечество получит в своё распоряжение фактически неограниченный источник энергии. Это чрезвычайно важная задача, стоящая перед нынешним и будущими поколениями — в свете угрожающей перспективы истощения нефтегазовых ресурсов нашей планеты.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: