Локальная теорема Лапласа




Если вероятность появления случайного события в каждом испытании постоянна, то вероятность того, что в испытаниях событие наступит ровно раз, приближённо равна:
, где .

При этом, чем больше , тем рассчитанная вероятность будет лучше приближать точное значению , полученное (хотя бы гипотетически) по формуле Бернулли. Рекомендуемое минимальное количество испытаний – примерно 50-100, в противном случае результат может оказаться далёким от истины. Кроме того, локальная теорема Лапласа работает тем лучше, чем вероятность ближе к 0,5, и наоборот – даёт существенную погрешность при значениях , близких к нулю либо единице. По этой причине ещё одним критерием эффективного использования формулы является выполнение неравенства ( ).

Так, например, если , то и применение теоремы Лапласа для 50-ти испытаний оправдано. Но если и , то и приближение (к точному значению ) будет плохим.

Биномиальное распределение, его математическое ожидание, дисперсия

Рассмотрим серию независимых испытаний проведенных в условиях схемы Бернулли, в ходе которых появлялось событие с вероятностью , одинаковой для всех испытаний.

 

Необходимо определить закон распределения случайной величины числа появлений события . Для этого нужно определить возможные значения и их вероятности. Минимальное значение равно нулю, что соответствует ситуации, когда в серии испытаний событие не появилось; максимальное значение соответствует «успеху» во всех испытаниях серии и равно . Очевидно, что случайная величина числа появлений события в серии испытаний принимает значения . Остается найти соответствующие вероятности этих возможных значений, для чего достаточно воспользоваться формулой Бернулли:

 

,

 

где , .

 

Эта формула является аналитическим выражением искомого закона распределения. Эта формула еще называется биномиальной, так как ее правая часть представляет собой -й член бинома Ньютона:

 

.

 

Отсюда сразу видно, что для полученного закона биномиального распределения вероятностей числа появления события при независимых испытаниях выполняется условие нормировки, т.е. сумма всех вероятностей равна единице:

 

.

 

Теорема. Математическое ожидание числа появлений события в независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

 

Доказательство. Случайная величина распределена по биномиальному закону:

 

( ),

 

где .

 

Величину можно рассматривать, как сумму независимых случайных величин , где ( ) – число появлений события в м испытании. Случайная величина принимает лишь два значения: 1, если событие появилось в м испытании, и 0, если в м испытании события не произошло.

 

Вероятности этих событий и , а математическое ожидание: ( ).

 

Следовательно, используя теорему о математическом ожидании суммы, получим:

 

.

 

Таким образом, математическое ожидание числа появлений события в условиях схемы Бернулли совпадает со средним числом появлений события в данной серии испытаний.

 

Дисперсия числа появлений события в независимых испытаниях равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании: .



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-18 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: