НЕЙРОФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ МЕХАНИЗМОВ ОБУЧЕНИЯ И ВОСПИТАНИЯ




Дефектология, как и педагогика в целом, строит теорию обучения и воспитания аномальных детей на знании строения нервной системы, ее функций и особенностей развития. Кроме того, дефектология опирается на знание закономерностей становления и развития психики. Научное познание вопросов психической деятельности человека началось по существу со второй половины XIX в. В 1863 г. И.М.Сеченов опубликовал работу «Рефлексы головного мозга», в которой привел убедительные доказательства рефлекторной природы психической деятельности мозга. Он подчеркивал, что ни одно впечатление, ни одна мысль не возникают сами по себе, а всегда в результате какой-нибудь причины. Самые разнообразные переживания, чувства, мысли в конечном итоге ведут к тем или иным ответным действиям. Богатейший материал был получен И.М.Сеченовым в результате тщательных наблюдений за развитием поведения и сознания ребенка. В процессе этих наблюдений установлено, что простые врожденные рефлексы с возрастом постепенно усложняются. Огромное влияние на этот процесс усложнения рефлексов оказывают обучение и воспитание. Под их воздействием рефлексы по объективным законам мозговой деятельности входят во все новые отношения друг с другом. В результате человек овладевает сложными формами поведения. Работа И.М.Сеченова «Рефлексы головного мозга» имела огромное значение для развития нейрофизиологии и педагогики, так как сконцентрировала внимание исследователей на материальной основе психических процессов. С нейрофизиологической точки зрения обучение и воспитание есть изменение ответных реакций по мере приобретения и накопления личного опыта. Процесс обучения тесно связан с восприятием сенсорной (входящей, чувствительной) информации и аналитико-синтетической деятельностью коры головного мозга. Анализ означает как бы расслоение, разделение поступающей в мозг информации на отдельные части, синтез представляет собой их соединение в единый образ. В основе восприятия предмета или явления лежат механизмы связи между отдельными анализаторами и различными отделами мозга, а также механизмы памяти. Поступающая через анализаторы информация достигает первичных полей коры головного мозга. Именно там формируются образы предметов и явлений. Однако тот или иной образ может быть сформирован при наличии необходимой связи между отдельными анализаторами. Так, серия взаимосвязанных различений может быть выработана при условии сохранности прилежащих к зрительному полю участков коры височной доли. Усвоение навыков поведения более высшего типа, чем простое различение, предполагает сохранность расположенных вблизи первичных полей ассоциативных областей. Одной из самых важных ассоциативных областей считаются лобные доли. Поражение этих долей на самых ранних этапах онтогенетического развития (сразу после рождения или несколько позже) значительно задерживает и нарушает психическое развитие ребенка. Сохранность лобной ассоциативной области - важная предпосылка успешного усвоения знаний в процессе обучения. Например, благодаря участию лобных долей можно осуществлять сопоставление наличного раздражителя со следами прошлых впечатлений. Такое сопоставление является, в частности, важным компонентом мнестической деятельности (запоминание, воспроизведение и т.д.). Лобные доли тесно связаны с теми отделами мозга, которые имеют непосредственное отношение к сфере эмоций: весь процесс обучения и воспитания в существенной мере связан с эмоциональной сферой. В процессе обучения и воспитания эмоции не только формируются, но и проявляются. Эмоции способствуют концентрации внимания на том или ином объекте изучения. В конечном счете без них оказалось бы невозможным решать встающие перед человеком практические и теоретические задачи. Таким образом, кора головного мозга выполняет анализ и синтез поступающих через анализаторы (зрительный, обонятельный и др.) раздражений. В коре, головного мозга происходит замыкание нервных связей. Кора обеспечивает сохранность поступающей извне информации, сопоставление сигналов с ответными реакциями, исправление допущенных ошибок. Поступающие в кору головного мозга сигналы предварительно перерабатываются (дробятся и объединяются) в других отделах нервной системы.

4. Три блока в структуре мозга. Ни один вид психической деятельности не может совершаться без одновременного участия трех функциональных блоков, трех основных аппаратов мозга. Первый блок (энергетический, или блок регуляции тонуса и бодрствования) анатомически представляет собой сетчатое образование ствола головного мозга. Он располагается в глубинных отделах мозга. В процессе эволюции эти отделы сформировались первыми. Первый блок принимает сигналы возбуждения, приходящие из внутренних органов и от органов чувств, улавливающих информацию о происходящих во внешнем мире событиях. Затем он перерабатывает эти сигналы в поток импульсов и постоянно посылает их в кору головного мозга. Импульсы тонизируют кору, без них она «засыпает». Второй блок ( блок приема, переработки и хранения информации) находится в задних отделах больших полушарий и состоит из трех подблоков - зрительного (затылочного), слухового (височного) и общечувствительного (теменного). Каждый подблок имеет иерархическое строение. Условно в них выделяют первичные, вторичные и третичные отделы. Первые дробят воспринимаемый образ мира (слуховой, зрительный, осязательный) на мельчайшие признаки: округлость и угловатость, высоту и звонкость, яркость и контрастность. Вторые синтезируют из этих признаков целые образы. Третьи объединяют информацию, полученную от разных подблоков, т.е. от зрения, слуха, обоняния, осязания. Третий блок (блок программирования, регуляции и контроля) расположен преимущественно в лобных долях мозга. Человек, у которого этот участок нарушен, лишается возможности поэтапно организовать свое поведение, не умеет перейти от одной операции к другой. В связи с этим личность такого человека как бы «распадается». Итогом анализа и синтеза поступающей информации является программа действий, которая должна отвечать заданным условиям. Если с помощью этой программы «задача» не решается, то в мозгу вновь и вновь создаются новые программы, которые в итоге должны привести к адекватной реакции организма на поступающие сигналы. Таким образом, сложный процесс выработки решения рассматривается как циклический круг возбуждения. Этот круг составляет основу деятельности мозга и его различных отделов. Неограниченные возможности ассоциативных связей в нервной системе, отсутствие узкой специализации нейронов коры создают условия для возникновения самых разнообразных межнейронных связей, формирования сложных «ансамблей нейронов», охватывающих различные функции. В этом состоит важнейшая основа способности к обучению.

5.Компенсаторные возможности мозга. В тех случаях, когда имеется «поломка» какого-либо механизма мозга, процесс развития и обучения нарушается. «Поломка» может произойти на разном уровне: могут быть нарушены ввод информации, ее прием, переработка и т.д. Например, поражение внутреннего уха с развитием тугоухости обусловливает снижение потока звуковой информации. Это приводит, с одной стороны, к функциональному, а затем и к структурному недоразвитию центрального (коркового) отдела слухового анализатора, с другой - к недоразвитию связей между слуховой зоной коры и двигательной зоной речевой мускулатуры, между слуховым и другими анализаторами. В этих условиях оказываются нарушенными фонематический слух и фонетическое оформление речи. Нарушается не только речевое, но и интеллектуальное развитие ребенка. В результате значительно затрудняется процесс его обучения и воспитания.Таким образом, недоразвитие или нарушение одной из функций ведет к недоразвитию другой или даже нескольких функций. Однако мозг располагает значительными компенсаторными возможностями. Мы уже отмечали, что неограниченные возможности ассоциативных связей в нервной системе, отсутствие узкой специализации нейронов коры головного мозга, формирование сложных «ансамблей нейронов» составляют основу больших компенсаторных возможностей коры головного мозга.Резервы компенсаторных возможностей мозга поистине грандиозны. По современным расчетам, человеческий мозг может вместить примерно 1020 единиц информации; это означает, что каждый из нас в состоянии запомнить всю информацию, содержащуюся в миллионах томов библиотеки. Из имеющихся в мозге 15 млрд клеток человек использует лишь 4%. О потенциальных возможностях мозга можно судить по необычайному развитию какой-либо функции у талантливых людей и возможностям компенсации нарушенной функции за счет других функциональных систем. В истории различных времен и народов известно большое число людей, обладавших феноменальной памятью. Великий полководец Александр Македонский знал по имени всех своих солдат, которых в его армии насчитывалось несколько десятков тысяч. Такой же памятью на лица обладал А.В.Суворов. Поражал феноменальной памятью главный хранитель библиотеки в Ватикане Джузеппе Меццофанти. Он знал в совершенстве 57 языков. Моцарт обладал уникальной музыкальной памятью. В возрасте 14 лет в соборе св. Петра он услышал церковную музыку. Ноты этого произведения составляли тайну папского двора и хранились в строжайшем секрете. Молодой Моцарт весьма простым способом «похитил» этот секрет: придя домой, он по памяти записал партитуру. Когда много лет спустя удалось сопоставить записи Моцарта с подлинником, то в них не оказалось ни одной ошибки. Исключительную зрительную память имели художники Левитан и Айвазовский.Известно большое число людей, обладающих оригинальной способностью к запоминанию и воспроизведению длинного ряда цифр, слов и т.д.Большие резервные возможности нервной системы используются в процессе реабилитации лиц с теми или иными отклонениями в развитии. При помощи специальных приемов дефектолог может компенсировать нарушенные функции за счет сохранных. Так, в случае врожденной глухоты или тугоухости ребенка можно обучить зрительному восприятию устной речи, т.е. считыванию с губ. В качестве временного заместителя устной речи может быть использована дактильная речь. При повреждении левой височной области человек теряет способность понимать обращенную к нему речь. Эта способность может быть постепенно восстановлена за счет использования зрительного, тактильного и других видов восприятия компонентов речи.Таким образом, дефектология строит свои методы работы по абилитации и реабилитации больных с поражениями нервной системы на использовании огромных резервных возможностей мозга.

6.Развитие нервно-психических функций в норме и при патологии Сложность и многоэтапность становления нервно-психических функций в онтогенезе (в процессе постнатального развития организма) нарушаются при различных заболеваниях нервной системы и проявляются в форме задержки темпа ее развития, выпадения функций анализаторов. Для научного обоснования лечебных и лечебно-педагогических мероприятий, направленных на улучшение состояния больных, коррекцию и компенсацию нарушенных функций, необходим прежде всего неврологический и педагогический анализ структуры дефекта и причин, вызвавших заболевание, выяснение его патофизиологических механизмов, времени образования дефекта, степени его тяжести, характера течения заболевания и особенностей развития ребенка. Такой подход возможен при комплексном участии в лечении ребенка невропатолога, психиатра, психолога, педагога-дефектолога. Уточнению характера патологического процесса или состояния помогают широко используемые в неврологической клинике дополнительные методы исследования: электроэнцефалография, эхоэнцефалография, реоэнцефалография, электромиография, рентгенография черепа, компьютерная томография. Кроме того, используются рентгеноконтрастные, биохимические и цитогенетические методы исследования.Многие заболевания нервной системы возникают вследствие неблагоприятных факторов во внутриутробном периоде развития или в раннем детстве. Причинами патологии нервной системы плода и ребенка раннего возраста могут быть инфекционные агенты (различные бактерии, вирусы, паразиты), физические факторы (ионизирующая радиация, высокочастотное излучение, повышенная вибрация и др.), различные химические вещества, заболевания матери, несовместимость крови матери и плода по группам крови и резус-фактору, неблагоприятное течение беременности и другие факторы.Мозг наиболее чувствителен к различным неблагоприятным воздействиям в критические периоды своего развития, когда формируются наиболее важные «функциональные ансамбли», выражена напряженность обменных процессов, наблюдается интенсивный рост отдельных элементов нервной системы. Наиболее выраженные и диффузные изменения нервной системы и других органов возникают в случае воздействия вредных факторов на раннем этапе развития плода. Неблагоприятные воздействия на плод на 3-10-й неделе его развития могут быть причиной формирования таких грубых пороков развития нервной системы, как анэнцефалия (отсутствие больших полушарий головного мозга), микроцефалия (уменьшение объема и массы мозга), гидроцефалия (водянка головного мозга). Эти неблагоприятные воздействия нередко приводят к гибели плода или рождению нежизнеспособного новорожденного. В том случае, когда нарушения возникают на более поздних этапах развития, выраженность дефекта может варьировать в различной степени: от грубого нарушения функции или ее полного отсутствия до легкой задержки темпа развития.Неврологические заболевания у детей раннего возраста нередко приводят к своеобразному аномальному развитию функций. Речь идет об искажении программы развития. Каждая функция в своем развитии проходит определенные стадии, между которыми существует закономерная преемственность. Появление новых форм реагирования сопровождается угасанием первоначальных примитивных реакций. Чрезмерная выраженность последних может блокировать и искажать дальнейшее формирование функций. Примером такого заболевания является детский церебральный паралич.Многие заболевания, протекающие с нарушением зрения, слуха, отставанием в психическом развитии, проявляются не сразу после рождения. Они характеризуются длительным скрытым течением с последующим внезапным клиническим проявлением на определенном этапе онтогенеза. Эти заболевания обусловлены генными мутациями, и для их лечения, кроме средств, корригирующих и стимулирующих нормальное развитие функции, необходимо возмещение недостающих продуктов обмена веществ.Кроме органических заболеваний нервной системы, т.е. заболеваний, протекающих с изменениями в структуре мозга, у детей могут наблюдаться нарушения, обусловленные вариациями темпа созревания функциональных систем.В определенные периоды онтогенеза, например во время миелинизации нервной системы (т.е. созревания оболочек, покрывающих нервные проводники), а также в периоды возрастных кризов неравномерность темпа развития и созревания морфо-функциональных систем значительно возрастает. В условиях повышенной эмоциональной нагрузки на относительно незрелые структуры последние могут становиться источником различных, чаще преходящих, патологических состояний. Под влиянием различных неблагоприятных воздействий внешней среды, в частности инфекционных заболеваний, травм, неправильного воспитания, а также при наличии генных мутаций или патологии внутриутробного развития и т.д., относительная возрастная незрелость и диспропорция созревания могут становиться основой таких нарушений, как задержки темпа развития ретардации). При соответствующей организации медико-педагогических мероприятий такие формы задержки развития, как правило, ликвидируются.Однако очень глубокие и стойкие задержки темпа развития морфофункциональных систем не всегда поддаются необходимой коррекции.В некоторых случаях активные медико-педагогические воздействия могут лишь временно компенсировать дефицит функции. В дальнейшем, с возрастанием предъявляемых к ребенку требований, нередко все более отчетливо проявляется функциональная недостаточность.В детском возрасте также нередко наблюдаются случаи временного ускорения развития функций, которое затем сменяется заметным замедлением темпов развития. Такое замедление в ряде случаев обусловлено чрезмерной «эксплуатацией» познавательных способностей ребенка, приводящей к своеобразным истощениям внутренних резервов нервной системы.Перечисленные выше отклонения в развитии нервной системы не исчерпывают всех возможных вариантов. Следует помнить, что развитие ребенка не всегда идет строго по схеме. Становление функций может как отставать, так и опережать указанные сроки. Это зависит от особенностей внутриутробного развития ребенка, течения родов и периода новорожденности. В каждом случае важно установить причину имеющегося дефекта: связан ли он с первичным поражением нервной системы, является ли результатом других заболеваний или так называемой педагогической запущенности.Под термином «педагогическая запущенность» понимают задержку развития, обусловленную недостаточностью целенаправленного развития функций и педагогического воздействия в целом. Педагогическая запущенность развивается на определенных этапах развития, а именно в период интенсивного развития функций. Например, в момент развития речи пребывание ребенка в неречевой среде, малое общение с матерью могут привести к задержке развития речи. Недостаточность зрительных, слуховых, эмоциональных и других раздражителей, т. е. так называемый «информационный голод», приводит к задержке психического развития.Таким образом, при анализе нарушений нервно-психического развития следует учитывать не только особенности состояния нервной системы ребенка, но и то окружение, в котором он растет и развивается.

7.Онтогенез нервной системы. Нервная система плода начинает развиваться на ранних этапах эмбриональной жизни. Из наружного зародышевого листка - эктодермы - по спинной поверхности туловища эмбриона образуется утолщение - нервная трубка. Головной конец ее развивается в головной мозг, остальная часть - в спинной мозг.На 3-й неделе зародышевого развития в головном отделе нервной трубки образуются три первичных мозговых пузыря (передний, средний и задний), у 4-5- недельного эмбриона уже образуется пять мозговых пузырей: конечный (телэнцефалон), промежуточный (диэнцефалон), средний (мезэнцефалон), задний (метэнцефалон) и продолговатый (миелэнцефалон). Впо­следствии из конечного мозгового пузыря развиваются полуша­рия головного мозга и подкорковые ядра, из промежуточного – промежуточный мозг (зрительные бугры, подбугорье), из средне­го формируется средний мозг - четверохолмие, ножки мозга, сильвиев водопровод, из заднего - мост мозга (варолиев мост) и мозжечок, из продолговатого - продолговатый мозг. Задняя часть миелэнцефалона плавно переходит в спинной мозг.Из полостей мозговых пузырей и нервной трубки образуются желудочки головного мозга (их четыре) и канал спинного мозга. (Полости заднего и продолговатого мозговых пузырей превращаются в IV желудочек, полость среднего мозгового пузыря - в узкий канал, называемый водопроводом мозга (сильвиев водопровод), который сообщает между собой III и IV желудочки. Полость промежуточного пузыря превращается в III желудочек, а полость конечного пузыря - в два боковых желудочка). Все желудочки имеют сообщение между собой и с каналом спинного мозга. В желудочках и спинномозговом канале циркулирует церебральная жидкость.Связь между различными отделами головного и спинного мозга осуществляется посредством отростков нейронов. Чувствительные нейроны, входя в связь с другими органа­ми, заканчиваются рецепторами - периферическими приборами, воспринимающими раздражение. Двигательные нейроны заканчиваются мионевральным синапсом - контактным образованием нервного волокна с мышцей.К 3-му месяцу внутриутробного развития выделяются основ­ные части центральной нервной системы: большие полушария и ствол мозга, мозговые желудочки, а также спинной мозг. К 5-му месяцу дифференцируются основные борозды коры больших по­лушарий, однако кора остается еще недостаточно развитой. На 6-м месяце отчетливо выявляется функциональное превалирование высших отделов нервной системы плода над нижележащими от­делами.Головной мозг новорожденного имеет относительно большую величину. Масса его в среднем составляет 1/8 массы тела, т.е. около 400 г, причем у мальчиков она несколько больше, чем у девочек. У новорожденного хорошо выражены борозды, круп­ные извилины, однако их глубина и высота невелики. Мелких борозд относительно мало, они появляются постепенно в тече­ние первых лет жизни. К 3 годам масса головного мозга по сравнению с массой его при рождении утраивается, к 5 годам она составляет 1/13-1/14 массы тела. К 20 годам первоначальная масса мозга увеличивается в 4-5 раз и составляет у взрослого человека всего 1/40 массы тела. Рост мозга происходит главным образом за счет миелинизации нервных проводников (т.е. покрытия их особой, миелиновой, оболочкой) и увеличения размера имеющихся уже при рождении примерно 20 млрд. нервных клеток. Мозговая ткань новорожденного малодифференцированна, т.е. развита плохо. Лишь в 15-16 лет строение мозга напоминает строение мозга взрослого, но недоразвит мозжечок, мелкие извилины и мозолистое тело.После рождения активно развивается спинной мозг, по сравнению с головным спинной мозг новорожденного имеет более законченное морфологическое строение. В связи с этим он оказывается более совершенным и в функциональном отношении. Спинной мозг у новорожденного относительно длиннее, чем у взрослого. В дальнейшем рост спинного мозга отстает от роста по­звоночника, в связи с чем его нижний конец «перемещается» кверху. Рост спинного мозга продолжается приблизительно до 20 лет и наибо­лее выражен в грудном отделе. В первые годы жизни ребенка начинают формироваться шейное и поясничное утолщения спинного мозга. В этих утолщениях сконцентрированы клетки, иннервирующие верхние и нижние конечности. Периферическая нервная система новорожденного недостаточно миелинизирована, пучки нервных волокон редкие, распределены неравномерно. Про цессы миелинизации происходят неравномерно в различных отделах. Миелинизация черепных нервов наиболее активно происходит в первые 3-4 месяца и заканчивается к 1 году. Миелинизация спинномозговых нервов продолжается до 2-3 лет. Вегетативная нервная система функционирует с момента рождения. В дальнейшем отмечаются слияние отдельных узлов и образование мощных сплетений симпатической нервной системы.На ранних этапах эмбриогенеза между различными отделами нервной системы формируются четко дифференцированные, «жесткие» связи, создающие основу для жизненно необходимых врожденных реакций. Набор этих реакций обеспечивает первичную адаптацию после рождения (например, пищевые, дыхательные, защитные реакции). Взаимодействие нейронных групп, обеспечи­вающих ту или иную реакцию либо комплекс реакций, составляет функциональную систему.

8.Развитие важнейших функциональных систем мозга. Учение о системогенезе Функциональная система есть объединение различных нервных элементов, участвующих в обеспечении какой-либо функции. Она является важнейшим саморегулирующимся механизмом мозга. Для оценки уровня индивидуального развития нервной системы (онтогенетического уровня) имеет значение не столько оценка степени анатомической зрелости тех или иных элементов, сколько оценка их способности регулировать определенную функцию. Отсюда следует, что процессы онтогенеза можно понять глубоко с позиций системогенеза, т.е. не изолированного, а посистемного развития нервных элементов. Основы учения о системогенезе были заложены выдающимся советским физиологом П.К.Анохиным.Понятие «функциональная система» позволяет объяснить некоторые закономерности становления нервно-психических функций в онтогенезе. Важное значение имеет тот факт, что отдельные компоненты функциональной системы формируются примерно в одно и то же время, хотя и могут принадлежать к филогенетически разным уровням. Вследствие этого в процессе эмбрионального развития наряду с общей последовательностью образования различных отделов нервной системы (по принципу - сначала эволюционно более древние, а затем более молодые) наблюдаются и отклонения от последовательности, а именно посистемное созревание нервных элементов - системогенез. В первую очередь формируются те функциональные системы, которые имеют первостепенное жизненное значение. В функциональную систему могут объединяться разные в эволюционном плане уровни; поэтому в пределах одного и того же уровня можно наблюдать разные степени созревания отдельных элементов в зависимости от их вовлеченности в функциональную систему.Принцип неодновременности, гетерохронности можно проиллюстрировать многими примерами. Например, неравномерно созревают отдельные волокна лицевого нерва, иннервирующие мышцы лица. У новорожденных наиболее готовы к функционированию те нервные клетки и их волокна, которые имеют отношение к акту сосания, тогда как другие волокна лицевого нерва еще не миелинизированы. Другим примером системогенеза может быть организация у новорожденных механизма хватательного рефлекса. Уже на 4-6-м месяце внутриутробного развития человеческого эмбриона из всех нервов руки наиболее полно созревают те, которые обеспечивают сокращение сгибателей пальцев. Кроме того, к этому периоду дифференцируются клетки передних рогов спинного мозга на уровне восьмого шейного сегмента, где расположены двигательные нейроны сгибателей пальцев кисти, формируются связи с вышестоящими регулирующими отделами нервной системы.Установлено несколько важнейших принципов системогенеза. Первый принцип заключается в том, что функциональные системы формируются не одновременно, а по мере жизненной необходимости, связанной с условиями существования организма. Так, новорожденный ребенок наделен готовыми системами, обеспечивающими регуляцию наиболее важных процессов - сосания, глотания, дыхания. Представители других видов к моменту рождения располагают гораздо большим количеством готовых функциональных систем. В частности, детеныш кенгуру способен самостоятельно забираться в сумку матери, а только что вылупившийся из яйца гусенок следовать за матерью или любым движущимся предметом.Наряду с этим имеет место значительное несовершенство зрительных, слуховых, двигательных реакций. В неодновременности формирования реагирующих механизмов заключается принцип гетерохронности созревания отделов нервной системы. Второй принцип системогенеза состоит в межсистемной и внутрисистемной гетерохронности. Межсистемная гетерохронность - неодновременные закладка и формирование разных функциональных систем (сосание и зрительный контроль). Внутрисистемная гетерохронность - постепенное усложнение формирующейся функции. Первоначально созревают элементы, дающие возможность минимального обеспечения функции; затем постепенно вступают в строй и другие отделы данной системы, позволяющие реагировать на внешние и внутренние воздействия более тонко. Например, развитие хватательных функций руки. В первые месяцы жизни любое раздражение ладони вызывает сжимание кисти в кулачок. Впоследствии схватывание становится более избирательным, возникает сопротивление большого пальца остальным. Внутрисистемная гетерохрония обусловлена не только дозреванием элементов данной функциональной системы, но и установлением межсистемных связей. Например, автоматическое схватывание усложняется по своей двигательной организации, но в то же время начинает все более явственно обнаруживаться зрительный контроль над действием руки (зрительно-моторная координация).Учение о системогенезе позволяет понять причины строгой последовательности и преемственности этапов нервно-психического развития ребенка. Например, удерживание головы предшествует сидению, сидение - стоянию, стояние - ходьбе. Способность удерживать голову является важной предпосылкой для контроля за положением тела. Это достигается благодаря совершенствованию органа равновесия и за счет усложняющегося зрительного контроля.Подход с позиций системогенеза позволяет не только находить критерии для возрастных нормативов той или иной функции, но и выяснять структурно-функциональные основы различных аномалий развития. Может наблюдаться как полное, равномерное недоразвитие целостной функциональной системы, так и недоразвитие отдельных ее звеньев с установлением аномальных связей между нервными центрами.Особенно наглядно варианты межсистемного и внутрисистемного недоразвития проявляются при различных формах патологии речи. Встречаются дети с общей моторной неловкостью и с грубым косноязычием. Однако наблюдается немало случаев, когда общая моторика практически не страдает, а в речи обнаруживается много дефектов - заикание, «пулеметная», невнятная речь и т.д. Наконец, приходится наблюдать учеников с изолированными расстройствами письма при достаточно хорошей устной речи. Принципы системогенеза позволяют конкретизировать, структурно определять отклонения в возрастной эво­люции нервной системы и намечать пути преодоления формирующихся дефектов.К числу других важнейших функциональных систем мозга относятся слуховая, зрительная и ин­теллектуальная сфера.

9.Возрастная эволюция мозга. В процессе онтогенетическо­го развития мозг человека претерпевает значительные изменения. В анатомическом отношении мозг новорожденного и мозг взрос­лого человека существенно различаются. Это означает, что в про­цессе индивидуального развития происходит возрастное эволю­ционирование мозговых структур. Кроме того, даже после завер­шения морфологического созревания нервной системы человека остается необъятная «зона роста» в смысле совершенствования, перестройки и нового образования функциональных систем. Мозг как совокупность нервных элементов у всех людей остается при­мерно одинаковым, но на основе этой первичной структуры соз­дается бесконечное разнообразие функциональных особенностей. Завершенность биологической эволюции человека следует по­нимать не как конечный пункт, а как динамический момент, от­крывающий большие возможности для индивидуальных вариа­ций, для постоянного совершенствования личности.В процессе эволюции мозга можно выявить два важнейших стратегических направления. Первое из них заключается в макси­мальной предуготованности организма к будущим условиям суще­ствования. Это направление характеризуется большим набором врожденных, инстинктивных реакций, которыми организм оснащен буквально на все случаи его жизни. Однако набор таких «случаев» довольно стереотипен и ограничен (питание, защита, размножение).Однако главное не в количестве, а в структуре мозгового веще­ства. В рамках второго направления эволюции, предоставившего индивидам наибольшее число степеней свободы действия, проис­ходит неуклонное увеличение размеров коры больших полушарий мозга. Этот отдел является наименее специализированным и, сле­довательно, наиболее пригодным для фиксации личного опыта. Принцип кортикализации функций, таким образом, предполагает возможность их непрерывного совершенствования.Новорожденный фактически ничего не умеет и практически всему может и должен научиться в течение жизни. Как избежать ошибок и искажений в развитии, как добиться формирования гармоничной, творческой личности? Существует мнение, что все зависит от воспитания. Новорожденного можно сравнить с своего рода нулевым циклом предстоящей постройки, и из этого нуля можно сотворить все, что угодно.Взгляд на период новорожденности как на нулевую фазу не нов. Еще в XVII в. Д.Локк развивал идеи о том, что душа ново­рожденного - «чистая доска», «пустое помещение», которое за­полняется в процессе развития и воспитания. Эти постулаты на­долго закрепились в педагогике. Однако современные исследова­ния показывают, что мозг новорожденного - не просто безликая масса клеток, ожидающих внешних воздействий, а генетически запрограммированная система, постепенно реализующая зало­женную в нее тенденцию развития. Только что родившийся ребе­нок - далеко не «нуль», а сложнейший результат насыщенного перестройками периода внутриутробного развития.Если продолжить сравнение мозга новорожденного с «чистой доской», незаполненной тетрадью, то можно отметить, что не­смотря на внешнее сходство всех тетрадей каждый экземпляр име­ет свои особенности. В одном, например, нельзя писать чернила­ми (они расплываются), в другом обнаруживаются неразрезанные страницы (поневоле приходится оставлять пустые места), в треть­ем перепутана нумерация страниц и необходимо делать записи не по порядку, а в разных местах. Более того, практически невоз­можно записать во все экземпляры один и тот же текст, одни и те же сведения, не говоря уже о различиях формы, стиля изложения и почерка. В одних случаях изложение получается предельно сухим, в других - романтически приподнятым, в третьих целые фрагмен­ты оказываются совершенно неразборчивыми. Однако следует отметить, что сравнение мозга с тетрадью чересчур поверхностно, ибо мозг человека - это не компьютер для фиксации сведений, а система, активно перерабатывающая информацию и способная самостоятельно извлекать новую информацию на основе творче­ского мышления. Главной причиной творческого, интеллектуаль­ного развития ребенка является необходимость взаимодействия отдельных форм поведения в ходе решения возникающих и ус­ложняющихся в окружении ребенка жизненных задач. На основе изучения развивающегося мозга можно условно го­ворить о «биологическом каркасе личности», который влияет на темп и последовательность становления отдельных личностных качеств. Понятие «биологический каркас» динамическое. Это, с од­ной стороны, генетическая программа, постепенно реализующаяся в процессе взаимодействия со средой, с другой - промежуточный результат такого взаимодействия. Динамичность «биологичес­кого каркаса» особенно наглядна в детстве. По мере повзросления биологические параметры все более стабилизируются, что дает возможность разрабатывать типологию темпераментов и других личностных характеристик.Важнейшими факторами «биологического каркаса личности» являются особенности мозговой деятельности. Эти особенности генетически детерминированы, однако эта генетическая про­грамма всего лишь тенденция, возможность, которая реализует­ся с различной степенью полноты и всегда с какими-то модифи­кациями. При этом играют большую роль условия внутриутроб­ного развития и различные факторы внешней среды, воздейст­вующие после рождения. Все же влияния внешних факторов не­беспредельны. Генетическая программа определяет предел коле­баний в своей реализации, и этот предел принято обозначать как норму реакции. Например, такие функциональные системы, как зрительная, слуховая, двигательная, могут существенно различаться в нормах реакции. У одного человека от рождения присутствуют задатки абсолютного музыкального слуха, другого нужно обучать разли­чению звуков, но выработать абсолютный слух так и не удается. То же самое можно сказать о двигательной неловкости или, на­оборот, одаренности. Таким образом, «биологический каркас» в известной степени предопределяет контуры того будущего ан­самбля, который называется личностью.Говоря о вариантах нормы реакции отдельных функциональных систем, следует указать на относительную независимость их друг от друга. Например, между музыкальным слухом и моторной лов­костью нет однозначной связи. Можно прекрасно, тонко понимать музыку, но плохо выражать ее в движениях. Этот факт раскрывает одну из важнейших закономерностей эволюционирования мозга - дискретность формирования отдельных функциональных систем.

10.Принцип гетерохронности в



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-05-09 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: