Напряжённость электрического поля в классической электродинамике




Напряжённость электрического поля — одна из основных фундаментальных величин классической электродинамики. В этой области физики сопоставимыми с ней по значимости являются только вектор магнитной индукции (совместно с вектором напряжённости электрического поля образующий тензор электромагнитного поля) и электрический заряд. С некоторой точки зрения столь же важными представляются потенциалы электромагнитного поля (образующие вместе единый электромагнитный потенциал).

Остальные понятия и величины классической электродинамики, такие как электрический ток, плотность тока, плотность заряда, вектор поляризации, а также вспомогательные поле электрической индукции и напряженность магнитного поля — хотя безусловно важны и содержательны, по сути оказываются вторичными или производными.

Принцип суперпозиции (наложения) полей формулируется так:

Если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна: .

Принцип суперпозиции полей справедлив для случая, когда поля, созданные несколькими различными зарядами, не оказывают никакого влияния друг на друга, т. е. ведут себя так, как будто других полей нет. Опыт показывает, что для полей обычных интенсивностей, встречающихся в природе, это имеет место в действительности.

Благодаря принципу суперпозиции для нахождения напряжен­ности поля системы заряженных частиц в любой точке достаточно воспользоваться выражением напряженности поля точечного заряда.

 

 

На рисунке ниже показано, как в точке A определяется напряжен­ность поля , созданная двумя точечными зарядами q1 и q2.

 

 

Силовые линии электрического поля.

Электрическое поле в пространстве принято представлять силовыми линиями. Понятие о силовых линиях ввел М. Фарадей при исследовании магнетизма. Затем это понятие было развито Дж. Максвеллом в исследованиях по электромагнетизму.

Силовая линия, или линия напряженности электрического поля, — это линия, касательная к которой и каждой ее точке совпадает с направлением силы, действующей на положительный точечный заряд, находящийся в этой точке поля.

В электростатическом поле силовые линии не замкнуты, они всегда начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Они нигде не пересекаются, пересе­чение силовых линий говорило бы о неопределенности направления напряженности поля в точке пересечения. Плотность силовых линий больше вблизи заряженных тел, где напряженность поля больше.

 

Поле заряженного шара.

Напряженность поля заряженного про­водящего шара на расстоянии от центра шара, превышающем его радиус r ≥ R. определяется по той же формуле, что и поля точечного заряда . Об этом свидетельствует распределение силовых линий (рис. а), аналогичное распределению линий напряженности то­чечного заряда (рис. б).

 

 

Заряд шара распределен равномерно по его поверхности. Внутри проводящего шара напряженность поля равна нулю.

 

E x = − ∂ φ ∂ x, E y = − ∂ φ ∂ y, E z = − ∂ φ ∂ z, {\displaystyle E_{x}=-{\frac {\partial \varphi }{\partial x}},\quad E_{y}=-{\frac {\partial \varphi }{\partial y}},\quad E_{z}=-{\frac {\partial \varphi }{\partial z}},}



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: