Массивы чисел в системе MATLAB




Наборы чисел в программировании принято называть массивами. Всему массиву присваивается одно имя, а доступ к отдельным элементам массива осуществляется по целочисленному индексу, то есть номеру элемента в массиве. Массивы бывают одномерными, когда используется единственный индекс (номер), а могут быть и многомерными (в частности — двумерными).

Сначала рассмотрим одномерные массивы. Это линейные наборы чисел (элементов), в которых позиция каждого элемента задаётся единственным числом — его номером. Можно говорить о первом элементе массива, о втором и т.д.

Для задания одномерного массива, состоящего из нескольких чисел (вещественных или комплексных), используется операция конкатенации, обозначаемая с помощью квадратных скобок — []. Например, следующее выражение

a1 = [ 1 2 3 ]

 

формирует переменную с именем a1, являющуюся одномерным массивом из трёх элементов (вещественных чисел). Объединяемые в массив элементы должны отделяться друг от друга либо пробелом, либо запятой. Так что выражение

a1 = [ 1, 2, 3 ]

 

абсолютно идентично предыдущему.

Для доступа к индивидуальному элементу одномерного массива нужно после его имени указать в круглых скобках индекс (номер) этого элемента. Например, третий элемент массива a1 обозначается как a1(3), первый элемент — как a1(1), второй элемент — как a1(2).

Если требуется изменить третий элемент уже сформированного выше операцией конкатенации массива a1, то можно применить операцию присваивания:

a1(3) = 789

 

Пусть, к примеру, второй элемент массива a1 должен стать равным среднему арифметическому первого и третьего элементов. Для этого выполняем следующее действие:

a1(2) = (a1(1)+a1(3))/2

 

Количество элементов в одномерном массиве всегда можно узнать с помощью функции length:

length(a1)
ans =
3

 

При попытке чтения несуществующего элемента (напрмер, четвёртого элемента массива a1) в командном окне MATLABа появляется сообщение об ошибке:

В этом сообщении утверждается, что индекс превысил размер массива.

В то же время запись несуществующего элемента вполне допустима — она означает добавление нового элемента к уже существующему массиву:

a1(4) = 7

 

Применяя к массиву a1 функцию length, находим, что количество элементов в этом массиве возросло до четырёх:

length(a1)
ans =
4

 

То же самое действие — "удлинение массива a1 ",можно выполнить и с помощью операции конкатенации:

a1 = [ a1 7 ]

 

Здесь операндами операции конкатенации являются массив a1, состоящий из трёх элементов, и добавляемый к нему четвёртый элемент, равный 7.

Теперь создадим ещё один одномерный массив a2, причём для его создания не будем использовать операцию конкатенации (как мы поступили выше). Вместо этого будем прописывать каждый элемент создаваемого массива по-отдельности:

a2(1) = 67
a2(2) = 7.8
a2(3) = 0.017

 

Из двух существующих массивов — массива a1 с четырьмя элементами и массива a2 с тремя элементами, можно одной (групповой) операцией конкатенации создать одномерный массив b из семи элементов:

b = [ a1, a2 ]

 

Массивы могут состоять не только из вещественных чисел. Выражение

d = [ 1+2i, 2+3i, 3-7i ]

 

формирует одномерный массив d комплексных чисел. Разделителем элементов формируемого одномерного массива может быть либо пробел, либо запятая. При использовании выражений и комплексных чисел использование запятой предпочтительнее.

Теперь рассмотрим двумерные массивы, которые можно трактовать как набор чисел, упорядоченный в виде прямоугольной таблицы, когда для доступа к индивидуальному элементу используется два индекса — номер строки и номер столбца (на пересечении которых и стоит выбранный элемент).

Двумерный массив характеризуется количеством строк и количеством столбцов. Составим массив a3, состоящий из двух столбцов и трёх строк:

Из этого рисунка хорошо видно, что в качестве разделителя строк в формируемом с помощью операции конкатенации двумерном массиве служит точка с запятой.

Как и в случае одномерных массивов двумерный массив можно создать, индивидуально прописывая его элементы:

a3(1,1) = 1
a3(1,2) = 2
a3(2,1) = 3
a3(2,2) = 4
a3(3,1) = 5
a3(3,2) = 6

 

Для доступа к отдельным элементам двумерного массива используется выражение с круглыми скобками, в которых через запятую перечисляются его индексы. Первым указывается номер строки, вторым — номер столбца.

Система MATLAB может работать и с массивами больших размерностей. Они будут рассматриваться позже в следующем разделе.

Вернёмся к двумерным массивам, которые в математике принято называть матрицами. Любая строка матрицы является одномерным массивом, и любой столбец матрицы также является одномерным массивом. Однако есть некоторая разница в упорядочении их элементов с точки зрения матриц: элементы первого одномерного массива упорядочены вдоль строк матрицы (горизонтально), а элементы второго — вдоль столбцов (вертикально). Если явно учитывать в понятии одномерного массива эту разницу, то тогда массивы первого типа называют вектор-строками, а второго типа — вектор-столбцами. В этом случае также можно считать, что вектор-строки являются частным случаем матрицы с количеством строк, равным единице, а вектор-столбцы являются частным случаем матрицы с количеством столбцов, равным единице.

В системе MATLAB все одномерные массивы трактуются либо как вектор-строки, либо как вектор-столбцы. До сих пор мы вводили только вектор-строки. Следующее выражение, использующее операцию конкатенации, задаёт вектор-столбец

a4=[ 1; 2; 3]

 

состоящий из трёх строк, так как точка с запятой в операции конкатенации означает переход на новую строку.

Для массива a4 функция length(a4) возвращает число 3, так как действительно этот массив состоит из трёх элементов. Функция length не различает вектор-строки и вектор-столбцы.

Если попросить систему MATLAB показать значение переменной a4, то мы увидим следующую картину:

То есть MATLAB распознаёт "геометрию" этого одномерного массива и наглядно отображает его, располагая элементы для показа в своём окне вертикально.

Чтобы отразить правильно геометрию вектор-столбцов и вектор-строк, а также узнать размеры двумерного массива в обоих направлениях, используют функцию size. Для двумерного массива a3 получается следующий результат:

size(a3)
ans =
3 2

 

причём первым показывается число строк, а вторым — число столбцов.

Применяем эту же функцию к одномерным массивам. Вот, что из этого получается для вектор-строки a2

size(a2)
ans =
1 3

 

состоящего из одной строки и трёх столбцов. Для вектор-столбца a4, состоящего из трёх строк и одного столбца, имеем следующий результат применения функции size:

size(a4)
ans =
3 1

 

Наконец, попробуем применить эту функцию к переменной, состоящей из единственного числового значения, то есть к скаляру:

var1 = 5
size(var1)
ans =
1 1

 

Отсюда видно, что система MATLAB трактует даже по-существу скалярные величины как массивы с размером 1x1. Это ровным счётом ничего не меняет для пользователя, так как он может не обращать на это никакого внимания. MATLAB переходит от скаляров к массивам прозрачно, не требуя от пользователя дополнительных действий.

Итак, всё, с чем работает MATLAB, является массивами различной размерности. Все массивы из текущего сеанса работы (текущего Рабочего пространства) можно просмотреть

с точки зрения их структуры с помощью команды whos.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-04-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: