Глава II. Древний Восток




История математики

Д.Я. Стройк. Краткий очерк истории математики. - М.: Наука, 1984.

 

Глава I. Начало_ 1

Глава II. Древний Восток_ 3

Глава III. Греция_ 11

Глава IV. Восток после упадка античного общества_ 24

Глава V. Западная Европа. - Начало_ 30

Глава VI. Семнадцатое столетие 37

Глава VII. Восемнадцатое столетие 46

 

Глава I. Начало

1. Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века – палеолита. В течение сотен тысячелетий этого периода люди жили в пещерах, в условиях, мало отличавшихся от жизни животных, и их энергия уходила преимущественно на добывание пищи простейшим способом – собиранием ее, где только это было возможно. Люди изготовляли орудия для охоты и рыболовства, вырабатывали язык для общения друг с другом, а в эпоху позднего палеолита украшали свое существование, создавая произведения искусства, статуэтки и рисунки. Возможно, рисунки в пещерах Франции и Испании (давности порядка 15 тысяч лет) имели ритуальное значение, но несомненно в них обнаруживается замечательное чувство формы.

Пока не произошел переход от простого собирания пищи к активному ее производству, от охоты и рыболовства к земледелию, люди мало продвинулись в понимании числовых величин и пространственных отношений. Лишь с наступлением этого фундаментального перелома, переворота, когда пассивное отношение человека к природе сменилось активным, мы вступаем в новый каменный век, в неолит.

Это великое событие в истории человечества произошло примерно десять тысяч лет тому назад, когда ледяной покров в Европе и Азии начал таять и уступать место лесам и пустыням. Постепенно прекращались кочевые странствия в поисках пищи. Рыболовы и охотники больше вытеснялись первобытными земледельцами. Такие земледельцы, оставаясь на одном месте, пока почва сохраняла плодородие, строили жилища, рассчитанные на более долгие сроки. Стали возникать деревни для защиты от непогоды и от врагов-хищников. Немало таких неолитических поселений раскопано. По их остаткам видно, как постепенно развивались такие простейшие ремесла, как гончарное, ткацкое и плотничье. Существовали житницы, так что население могло, производя излишки, запасать продукты на зиму и на случай неурожая. Выпекали хлеб, варили пиво, в эпоху позднего неолита плавили и обрабатывали медь и бронзу. Совершались открытия, были изобретены гончарный круг и тележное колесо, совершенствовались лодки и жилища. Все эти замечательные новшества возникали лишь в пределах той или иной зоны и не всегда распространялись вне ее. Например, американские индейцы узнали о существовании тележного колеса лишь после прихода белых. Тем не менее, темп технического прогресса в колоссальной мере ускорился по сравнению с древним каменным веком.

Деревни вели между собой значительную торговлю, которая настолько развилась, что можно проследить наличие торговых связей между областями, удаленными на сотни километров друг от друга. Эту коммерческую деятельность сильно стимулировали открытие техники выплавки меди и бронзы и изготовление сначала медных, а затем бронзовых орудий и оружия. Это в свою очередь содействовало дальнейшему формированию языков. Слова этих языков выражали вполне конкретные вещи и весьма немногочисленные абстрактные понятия, но языки уже имели известный запас слов для простых числовых терминов и для некоторых пространственных образов. На таком уровне находились многие племена в Австралии, Америке и Африке, когда они впервые встретились с белыми людьми, а некоторые племена и сейчас живут в таких условиях, так что есть возможность изучить их обычаи и способы выражения мыслей.

2. Числовые термины, выражающие некоторые из «наиболее абстрактных понятий, какие в состоянии создать человеческий ум», как сказал Адам Смит, медленно входили в употребление. Впервые они появляются скорее как качественные, чем количественные термины, выражая различие лишь между одним (или, вернее, «каким-то» – «какой-то» скорее, чем «один человек»} и двумя и многими. Древнее качественное происхождение числовых понятий и сейчас еще выявляется в тех особых двоичных терминах, которые имеются в некоторых языках, как, например, в греческом и кельтском. С расширением понятия числа большие числа сначала образовывались с помощью сложения: 3 путем сложения 2 и 1, 4 путем сложения 2 и 2, 5 путем сложения 2 и 3.

Вот примеры счета некоторых австралийских племен:

Племя реки Муррей: 1 = энэа, 2 = петчевал, 3 = петчевал-энэа, 4 = петчевал-петчевал.

Камиларои: 1 = мал, 2 = булан, 3 = гулиба, 4 = булан-булан, 5 = булан-гулиба, 6 = гулиба-гулиба.

Развитие ремесла и торговли содействовало кристаллизации понятия числа. Числа группировали и объединяли в большие единицы, обычно пользуясь пальцами одной руки или обеих рук – обычный в торговле прием. Это вело к счету сначала с основанием пять, потом с основанием десять, который дополнялся сложением, а иногда вычитанием, так что двенадцать воспринималось как 10+2, а девять – как 10–1. Иногда за основу принимали 20 – число пальцев на руках и ногах. Из 307 систем счисления первобытных американских народов, исследованных Илсом (W. С. Eels), 146 были десятичными, 106 – пятичными и пятичными-десятичными, остальные – двадцатичными и пятично-двадцатичными. В наиболее характерной форме система с основанием двадцать существовала у майя в Мексике и у кельтов в Европе. Числовые записи велись с помощью пучков, зарубок на палках, узлов на веревках, камешков или ракушек, сложенных по пять в кучки, приемами, весьма схожими с теми, к каким в давние времена прибегал хозяин постоялого двора, пользовавшийся бирками. Для перехода от таких приемов к специальным символам для 5, 10, 20 и т.д. надо было сделать лишь один шаг, и именно такие символы мы обнаруживаем в. пользовании в начале писанной истории, на так называемой заре цивилизации.

Древнейший пример пользования бирками приходится на эпоху палеолита. Это – обнаруженная в 1937 г. в Вестонице (Моравия) лучевая кость молодого волка длиной около 17 сантиметров с 55 глубокими зарубками. Первые двадцать пять зарубок размещены группами по пять, за ними идет зарубка двойной длины, заканчивающая этот ряд, а затем с новой зарубки двойной длины начинается новый ряд из зарубок. Итак, очевидно, что неправильно старое утверждение, которое мы находим у Якоба Гримма и которое часто повторяли, будто счет возник как счет на пальцах. Пальцевый счет, то есть счет пятками и десятками, возник только на известной ступени общественного развития. Но раз до этого дошли, появилась возможность выражать числа в системе счисления, что позволяло образовывать большие числа. Так возникла примитивная разновидность арифметики. Четырнадцать выражали как 10+4, иногда как 15–1. Умножение зародилось тогда, когда 20 выразили не как 10+10, а как 2x10. Подобные двоичные действия выполнялись в течение тысячелетий, представляя собой нечто среднее между сложением и умножением, в частности в Египте и в доарийской культуре Мохенджо-Даро на Инде. Деление началось с того, что 10 стали выражать как «половину тела», хотя сознательное применение дробей оставалось крайне редким явлением. Например, у североамериканских племен известны только немногие случаи применения дробей, и почти всегда это только дробя 1/2 хотя иногда встречаются 1/3 и 1/4.

Любопытно, что увлекались очень большими числами, к чему, может быть, побуждало общечеловеческое желание преувеличить численность стада или убитых врагов; пережитки такого уклона заметны в библии и в других религиозных книгах.

3. Возникла и необходимость измерять длину и емкость предметов. Единицы измерения были грубы, и при этом часто исходили из размеров человеческого тела. Об этом нам напоминают такие единицы, как палец, фут (то есть ступня), локоть. Когда начали строить дома такие, как у земледельцев Индии или обитателей свайных построек Центральной Европы, стали вырабатываться правила, как строить по прямым линиям и под прямым углом. Английское слово «straight» (прямой) родственно глаголу «stretch» (натягивать), что указывает на использование веревки. Английское слово «line» (линия) родственно слову «linen» (полотно), что указывает на связь между ткацким ремеслом и зарождением геометрии. Таков был один из путей, по которому шло развитие математических интересов.

Человек неолита обладал также острым чувством геометрической формы. Обжиг и раскраска глиняных сосудов, изготовление камышовых циновок, корзин и тканей, позже – обработка металлов вырабатывали представление о плоскостных и пространственных соотношениях. Должны были сыграть свою роль и танцевальные фигуры. Неолитические орнаменты радовали глаз, выявляя равенство, симметрию и подобие фигур. В этих фигурах могут проявляться и числовые соотношения, как в некоторых доисторических орнаментах, изображающих треугольные числа; в других орнаментах мы обнаруживаем «священные» числа. Такого рода орнаменты оставались в ходу и в исторические времена. Прекрасные образцы мы видим на дипилоновых вазах миноиского и раннегреческого периода, позже – в византийской и арабской мозаике, в персидских и китайских коврах. Первоначально ранние орнаменты, возможно, имели религиозное или магическое значение, но постепенно преобладающим стало их эстетическое назначение.

В религии каменного века мы можем уловить первые попытки вступить в борьбу с силами природы. Религиозные обряды были насквозь пронизаны магией, магический элемент входил в состав существовавших тогда числовых и геометрических представлений, проявляясь также в скульптуре, музыке, рисунке.

Существовали магические числа такие, как 3, 4, 7, и магические фигуры, как, например, пятиконечная звезда и свастика; некоторые авторы даже считают, что эта сторона математики были решающим фактором в ее развитии, но, хотя общественные корни математики в новейшие времена, быть может, стали менее заметны, они вполне очевидны в раннем периоде истории человечества. Современная «нумерология» –пережиток магических обрядов, восходящих к неолитической, а может быть, даже к палеолитической эпохе.

4. Даже у самых отсталых племен мы находим какой-то отсчет времени и, следовательно, какие-то сведения о движении Солнца, Луны и звезд. Сведения этого рода впервые приобрели более научный характер, когда стали развиваться земледелие и торговля. Пользование лунным календарем относится к очень давней эпохе в истории человечества, так как изменение в ходе произрастания растений связывали с фазами Луны. Примитивные народы обратили внимание и на солнцестояние, и на восход Плеяд в сумерках. Самые древние цивилизованные народы относили астрономические сведения к наиболее отдаленному, доисторическому периоду своего существования. Другие первобытные народы пользовались при плавании созвездиями как ориентирами. Эта астрономия дала некоторые сведения о свойствах сферы, окружностей, об углах.

5. Эти краткие сведения из эпохи зарождения математики показывают, что наука в своем развитии не проходит обязательно все те этапы, из которых теперь складывается ее преподавание. Лишь недавно ученые обратили должное внимание на некоторые из древнейших известных человечеству геометрических фигур такие, как узлы или орнаменты. С другой стороны, некоторые более элементарные ветви нашей математики, как построение графиков или элементарная статика, сравнительно недавнего происхождения. А. Шпайзер заметил с известной едкостью: «За позднее происхождение элементарной математики говорит хотя бы то, что она явно склонна быть скучной, – свойство, видимо, ей присущее, – тогда как творческий математик всегда предпочтет заниматься задачами интересными и красивыми».

Глава II. Древний Восток

1. В течение пятого, четвертого и третьего тысячелетия до н. э. новые и более совершенные формы общества складывались на основе упрочившихся общин нового каменного века, существовавших на берегах, великих рек Африки и Азии в субтропическом поясе и вблизи него. Эти реки – Нил, Тигр и Евфрат, Инд, позже – Ганг, Хуанхэ, еще позже – Янцзы.

Прибрежные земли в районах этих рек могли давать обильные урожаи при условии регулирования разливов и осушения болот. В противоположность бесплодным пустыням и горным областям и равнинам, примыкавшим к этим речным долинам, последние можно было сделать райским местом. И в течение столетий такую задачу удалось решить путем постройки валов и плотин, создания сети каналов и водохранилищ. Регулирование водоснабжения потребовало совместных усилий населения обширных районов в размерах, значительно превосходивших то, что предпринималось в этом роде раньше. Это повело к установлению централизованного управления, сосредоточенного в городских центрах, а не в варварских селениях предшествующих эпох. Сравнительно большие излишки, которые давало значительно усовершенствованное и интенсивное земледелие, повысили уровень жизни населения в целом, заодно это создало городскую аристократию во главе с могущественными вождями. Возникло немало профессий и специальностей – их представляли ремесленники, солдаты, писцы и жрецы. Руководство общественными работами находилось в руках бессменных должностных лиц – группы людей, сведущих в смене времен года, движении небесных тел, в деле землеустройства, хранения запасов пищи и взимания налогов. Пользовались письменностью, чтобы придать форму закона требованиям администрации и действиям правителей. Чиновники, равно как и ремесленники, накопили значительный запас технических знаний, включая сюда металлургию и медицину. В состав этих знаний входило и искусство счета и измерения.

Теперь уже прочно сложились общественные классы. Это были вожди («цари»), самостоятельные землевладельцы и арендаторы, ремесленники, писцы и чиновники, крепостные и рабы. Местные вожди стали настолько богаче и сильнее, что их уже нельзя было считать чем-то вроде феодалов с ограниченной властью, – они становились вполне самодержавными царями. Раздоры и войны между различными деспотами приводили к возникновению более обширных владений, управляемых единым монархом. Так эти общественные формы, в основе которых лежало орошаемое и интенсивное земледелие, дали некий «восточный» вид деспотизма. Такой деспотизм мог держаться столетиями и затем пасть, то ли под ударами горных племен или кочевников пустыни, привлеченных богатствами речной долины, то ли из-за того, что запущенной оказывалась обширная, сложная и жизненно необходимая оросительная система. При таких обстоятельствах власть в племени либо переходила от одного царя к другому, либо же сообщество распадалось на меньшие объединения, причем процесс слияния мог затем начаться заново. Впрочем, при всех этих династических переворотах и повторных переходах от раздробленности к абсолютному деревни, составлявшие основу этого общества, собственно оставались незатронутыми и, стало быть, экономический и общественный строй в основном сохранялся. Восточное общество жило циклами, и даже сейчас в Азии и Африке есть много общин, сохранявших в течение тысячелетий один и тот же уклад жизни. В этих условиях продвижение вперед было медленным и извилистым, и периоды культурного подъема разделялись столетиями застоя и упадка.

Такая статичность Востока создавала некую исконную освященность его установлений, и это облегчало отождествление церкви и государственного аппарата. Чиновничество в значительной своей части было религиозного склада, как и государство в целом; во многих восточных странах жрецы были правителями областей. А так как заниматься наукой было задачей чиновничества, то во многих (но не во всех) восточных странах жрецы занимали выдающееся положение как обладатели научных знаний.

2. Восточная математика возникала как прикладная наука, имевшая целью облегчить календарные расчеты, распределение урожая, организацию общественных работ и сбор налогов. Вначале, естественно, главным делом были арифметические расчеты и измерения. Однако в науке, которую столетиями культивировали специалисты, чьей задачей было не только ее применение, но и посвящение в ее тайны, должен был развиться абстрактный уклон. Постепенно наукой стали заниматься ради нее самой. Из арифметики выросла алгебра не только потому, что это облегчало практические расчеты, но и в результате естественного развития науки, культивируемой и совершенствуемой в школах писцов. В силу тех же причин из измерений возникли начатки (но не больше) теоретической геометрии.

Хотя торговля и процветала в этих обществах древнего Востока, их экономическая сердцевина оставалась земледельческой, хозяйственной основой были села, обособленные и консервативные. Это приводило к тому, что различные культуры оставались резко отличными одна от другой, вопреки сходству экономического строя и одинаковому в основном уровню научных сведений. Замкнутость китайцев и египтян вошла в поговорку. Никогда не составляло труда отличить друг от друга искусство и письменность Египта, Месопотамии, Китая, Индии. Точно так же мы можем говорить о египетской, месопотамской, китайской и индийской математике, хотя в общем по своей арифметико-алгебраической природе они весьма схожи. Даже если наука одной из этих стран в течение некоторого периода обгоняла науку другой, она сохраняла свойственные ей приемы и символику.

На Востоке трудно датировать новые открытия. Статический характер его общественного строя приводил к тому, что научные сведения сохранялись без изменений в точение столетий и даже тысячелетий. Открытия, сделанные в пределах одного городского поселения, могли остаться неизвестными в других местностях. Хранилища научных и технических знаний могли быть уничтожены войнами при смене династий, наводнениями. Предание гласит, что в 221 г. до н.э., когда один абсолютный деспот Цинь Ши-хуанди (династии Цинь, Первый Желтый император) установил свое господство над всем Китаем, он приказал уничтожить все научные книги. Позже многое было вновь записано по памяти, но подобные события весьма затрудняют датировку открытий.

Другая трудность в датировке достижений восточной науки связана с материалом, которым пользовались для их закрепления. Народы Двуречья обжигали глиняные таблички, которые практически были неразрушимы. Египтяне пользовались папирусом, и поэтому значительная часть памятников их письменности сохранилась в условиях сухого климата. Китайцы и индийцы применяли значительно менее надежный материал – древесную кору или бамбук. Китайцы во втором столетии н.э. начали пользоваться бумагой, но мало что сохранилось от тысячелетия, предшествующего семисотому году н. э. Поэтому наши сведения о восточной математике весьма отрывочны, и для столетий догреческой эпохи мы, кроме материалов Египта и Двуречья, почти ничем не располагаем. Вполне возможно, что новые открытия поведут к полной переоценке относительного значения различных форм восточной математики. В течение долгого времени самыми богатыми историческими источниками мы обладали по Египту благодаря открытому в 1858 г. так называемому папирусу Райнда (Rhind), написанному около 1650 г. до н.э., но содержащему значительно более старый материал. За последние двадцать лет наши сведения о вавилонской математике значительно возросли благодаря замечательным открытиям О. Нейгебауера и Ф. Тюро-Дапжена, которые расшифровали большое число глиняных табличек. Теперь выясняется, что вавилонская математика была значительно более развита, чем ее восточные партнерши. Возможно это заключение будет окончательным, так как существует известное соответствие в содержании вавилонских и египетских текстов за ряд столетий. Более того, в экономическом развитии Двуречье ушло дальше, чем другие страны так называемого плодородного пояса на Ближнем Востоке, простиравшегося от Двуречья до Египта. Двуречье было перекрестком многочисленных караванных путей, тогда как Египет находился сравнительно в стороне. К этому надо добавить то обстоятельство, что возделывание почвы в районе блуждающих Тигра и Евфрата требует больше технического искусства и регулировки, чем в районе Нила, этой «самой добропорядочной из всех рек», если воспользоваться выражением Уильяма Уилкокса. Быть может, дальнейшее изучение древнеиндийской математики обнаружит неожиданные достижения, но пока притязания на это не кажутся достаточно обоснованными.

3. Источником большей части наших сведений о египетской математике являются два математических папируса. Один из них – это уже упомянутый папирус Райнда, содержащий 84 задачи, второй – так называемый московский папирус, который, может быть, на два столетия старше и содержит 25 задач. Эти задачи были уже достаточно стары, когда составлялись папирусы, но есть меньшие папирусы значительно более позднего происхождения, даже римских времен, которые не отличаются от названных по своим приемам. Математика, которая в них изложена, основана на десятичной системе счисления со специальными знаками для каждой десятичной единицы более высокого разряда – системе, которая нам знакома благодаря римским обозначениям, основанным на том же принципе: . На основе такой системы египтяне построили арифметику преимущественно аддитивного характера, т.е. ее основное направление состоит в сведении всех умножений к повторным сложениям. Например, умножение на 13 получается умножением сначала на 2, затем на 4, затем на 8 и сложением результатов умножения на 4 и на 8 с первоначальным числом:

Например, для вычисления писали:

и складывали все числа, отмеченные звездочкой, что дает 143.

Самой замечательной чертой египетской арифметики являются действия с дробями. Все дроби сводятся к суммам так называемых основных дробей, то есть дробей, имеющих числителем единицу. Единственное исключение составляла дробь , для которой существовал специальный символ. Сведение к суммам основных дробей производилось с помощью таблиц, которые давали разложение дробей вида единственное необходимое разложение, так как умножение было двоичным. Папирус Райнда дает таблицу, в которой приведены разложения на основные дроби для всех нечетных от 5 до 331, например

Из чего исходили при таком сведении к основным дробям, не ясно (например, почему заменяется суммой , а не суммой ).

Такие действия с дробями придавали египетской математике тяжеловесность и растянутость, однако разложение на сумму основных дробей применялось в течение тысячелетий, не только в эпоху эллинизма, но и в средние века. В то же время, указанное разложение предполагает определенное, математическое искусство, и существуют интересные теории для объяснения того способа, каким египетские специалисты могли получить свои результаты. Многие задачи очень просты и сводятся к линейному уравнению с одним неизвестным:

Некое количество, его , его и его , сложенные вместе, дают 33. Каково это количество?

Ответ, , записан в основных дробях: . Для неизвестного в уравнении существовал иероглиф, обозначавший «кучу» и произносившийся «хау» или «аха», Поэтому, египетскую алгебру иногда называют «хау-исчислением».

В задачах речь идет о количестве хлеба и различных сортов пива, о кормлении животных и хранении зерна, и это указывает на практическое происхождение такой запутанной арифметики и примитивной алгебры. В некоторых задачах проявляется теоретический интерес, например в задаче, в которой требуется разделить сто хлебов между пятью людьми так, чтобы их доли составляли арифметическую прогрессию и чтобы одна седьмая суммы, трех больших долей была равна сумме двух меньших. Мы даже встречаем геометрическую прогрессию в задаче о семи домах, в каждом из которых есть семь кошек, каждая из которых поедает семь мышей и т. д., что выявляет знание формулы для суммы членов геометрической прогрессии.

Некоторые задачи имеют геометрическую природу и касаются преимущественно измерений. Площадь треугольника находится как половина произведения основания и высоты; площадь круга диаметра определяется как , что дает для значение . Мы находим также некоторые формулы для объемов тел, таких, как куб, параллелепипед и круговой цилиндр, причем все они рассматриваются конкретно как сосуды, преимущественно для зерна. Самым замечательным результатом в египетских измерениях была формула для объема усеченной пирамиды с квадратным основанием где и суть длины сторон квадратов, a – высота. Этот результат, которому не найдено соответствующего ни в какой другой древней математике, особенно примечателен, поскольку нет указаний на то, чтобы египтяне имели какое-либо представление даже о теореме Пифагора, вопреки некоторым необоснованным рассказам о гарпедонафтах, которые якобы строили прямые углы с помощью веревки, имевшей узлов.

Мы здесь должны предостеречь от преувеличения древности египетской математической науки. Строителям пирамид эпохи 3000 лет до н.э. и даже раньше приписывали всевозможные результаты высокоразвитой науки. Существует даже много раз серьезно преподносившаяся версия, будто египтяне в 4212 г. до н.э. приняли так называемый сотический цикл для календаря. Нельзя всерьез приписывать столь точные математические и астрономические работы народу, едва вышедшему из условий каменного века, и источником таких рассказов, как обычно удается установить, является позднее египетское предание, дошедшее до нас через греков. Общей чертой древних цивилизаций является стремление датировать главные сведения весьма ранними эпохами. Все доступные тексты указывают, что египетская математика была скорее примитивного характера. На таком же уровне находилась и их астрономия.

4. Переходя к математике Двуречья, мы оказываемся на гораздо более высоком уровне, чем тот, которого когда-либо достигала египетская математика. Здесь мы можем даже уловить прогресс в ходе столетий. Уже самые древние тексты, относящиеся к последнему шумерскому периоду (третья династия Ура, 2100 г. до н.э.), показывают высокое вычислительное искусство. Эти тексты содержат таблицы для умножения, в которых хорошо развитая шестидесятичная система счисления сочетается с более ранней десятичной системой; здесь имеются клинописные символы, обозначающие 1, 60, 360 и также 60-1, 60-2. Однако не это было наиболее характерной их чертой. В то время как египтяне каждую единицу более высокого разряда обозначали новым символом, шумеры пользовались одним и тем же символом, но указывали его значение его положением. Так, 1, за которой следовала другая 1, давала запись числа 61, а 5 с последующим 6 с последующим 3 (мы это будем записывать как 5, 6, 3) обозначало . Такая позиционная (или поместная) система не отличается, по сути дела, от нашей системы записи чисел, при которой символ 343 заменяет . Подобная система имеет огромное преимущество при вычислениях, что можно сразу увидеть, если попытаться выполнить умножение и в нашей системе, и в системе с римскими цифрами. Позиционная система устраняла многие трудности в арифметике дробей так же, как это происходит при нашей системе с введением десятичных дробей. По-видимому, вся эта система была непосредственным результатом развития техники управления, что засвидетельствовано в тысячах текстов того же периода, где речь идет о поставках скота, зерна и т.п. и о связанных с этим арифметических вычислениях. При таком способе счета существовала некоторая неопределенность, так как значение символа не всегда было ясно по его положению. Так, (5, 6, 3) могло также означать , и точное истолкование надо было извлечь из контекста. Другая неопределенность возникала из-за того, что незаполненное место иной раз означало нуль, так что (11, 5) могло стоять вместо . Иной раз появляется специальный символ для нуля, но не ранее персидской эпохи. Так называемое «изобретение нуля», было, таким образом, логическим следствием введения поместной системы, но только после того, как техника вычислений была значительно усовершенствована.

Как шестидесятичная система, так и позиционность системы счисления оказались прочным достоянием человечества. Наше современное деление часа на 60 минут и 3600 секунд восходит к шумерам, равно как и наше деление окружности на 360 градусов, каждого градуса на 60 минут и каждой минуты на 60 секунд. Есть основания полагать, что выбор в качестве основы 60 вместо 10 появился при попытке унифицировать системы измерения, хотя то обстоятельство, что 60 имеет много делителей, тоже могло иметь значение. Что касается поместной системы, непреходящее значение которой сравнивают со значением алфавита, так как оба изобретения заменяют сложную символику методом, легко доступным широкому кругу людей, то ее история в значительной мере еще темна. Есть основание предполагать, что как индийцы, так и греки познакомились с нею на караванных путях, которые шли через Вавилон. Нам известно также, что арабы говорили о ней как об индийском изобретении. Однако вавилонская традиция могла повлиять на все позднейшее распространение поместной системы.

5. Следующая группа клинописных текстов относится ко времени первой вавилонской династии, когда в Вавилоне правил царь Хаммурапи (около 1950 г. до н.э.) и семитское население подчинило себе исконных жителей – шумеров. В этих текстах мы видим, что арифметика развилась в хорошо разработанную алгебру. Египтяне того же периода были в состоянии решать только простые линейные уравнения, а вавилоняне времен Хаммурапи полностью владели техникой решения квадратных уравнений. Они решали линейные и квадратные уравнения с двумя неизвестными, решали даже задачи, сводящиеся к кубическим и к биквадратным уравнениям. Такие задачи они формулировали только при определенных числовых значениях коэффициентов, но их методы не оставляют никакого сомнения относительно того, что они знали общие правила.

Приведем пример, взятый из одной из глиняных табличек этого периода.

«Площадь , состоящая из суммы двух квадратов, составляет 1000. Сторона одного из квадратов составляет стороны другого квадрата, уменьшенные на 10. Каковы стороны квадратов?»

Это приводит к уравнениям , решение которых сводится к решению квадратного уравнения , имеющему положительный корень .

В действительности решение в клинописном тексте ограничивается, как и во всех восточных задачах, простым перечислением этапов вычисления, необходимого для решения квадратного уравнения:

«Возведи в квадрат 10; это дает 100; вычти 100 из 1000; это дает 900» и т. д.

Резко выраженный арифметико-алгебраический характер вавилонской математики проявляется и в геометрии. Как и в Египте, геометрия развивалась на основе практических задач измерения, но геометрическая форма задачи обычно является только средством для того, чтобы поставить алгебраический вопрос. Предыдущий пример показывает, как задача относительно площади квадрата приводит к нетривиальной алгебраической проблеме, и этот пример не составляет исключения. Тексты показывают, что вавилонская геометрия семитского периода располагала формулами для площадей простых прямолинейных фигур и для объемов простых тел, хотя объем усеченной пирамиды еще не был найден. Так называемая теорема Пифагора была известна не только для частных случаев, но и в полной общности. Основной чертой этой геометрии был все же ее алгебраический характер. Это в равной мере относится и ко всем позднейшим текстам, особенно к текстам третьего периода, от которого до нас дошло немалое их число, – эпохи нововавилонской, персидской и эпохи Селевкидов (примерно от 600 г. до н.э. до 300 г.н. ».). Тексты этого последнего периода обнаруживают значительное влияние вавилонской астрономии, которая в это время приобретает характер настоящей науки, что сказывается в тщательном анализе различных эфемерид. Вычислительная техника математических текстов становится еще более совершенной; алгебра справляется с задачами на уравнения, для которых требуется значительное вычислительное искусство. От эпохи Селевкидов дошли вычисления, которые доведены до семнадцатого шестидесятичного знака. Столь сложные вычислительные работы уже нельзя связывать с вычислением налогов или измерением – стимулом для них были астрономические задачи или просто любовь к вычислениям.

Многое в этой вычислительной арифметике выполнялось с помощью таблиц, в наборе которых есть и простые таблицы для умножения, и таблицы обратных величин, квадратных и кубических корней. В одной из таблиц имеется ряд чисел вида , которым, по-видимому, пользовались для решения кубических уравнений вида . В них содержатся некоторые превосходные приближения: для дается (), для дается . Видимо, квадратные корни определялись по формуле наподобие следующей:

.

Что касается значения , в большинстве случаев таблички обходятся библейским . Есть указания на то, что применялись и лучшие приближения, дававшие для значение .

Уравнение появляется в задаче, в которой требуется решить систему уравнений , что сводится к уравнению или, согласно таблицам, .

В клинописных текстах есть задачи и на сложные проценты. Например, ставится вопрос, за какое время удвоится сумма денег, ссуженная под 20 (годовых) процентов.

Это приводит к уравнению , которое решается так: сначала замечают, что , а затем применяют линейную интерполяцию. В наших обозначениях

,

что дает для значение 4 года минус (2, 33, 20) месяцев.

По-видимому, одной из особых причин, вызвавших развитие алгебры примерно около 2000 г. до н.э., было то, что новые семитские правители Вавилона использовали прежнее шумерийское письмо. Это письмо, как и иероглифы, было набором идеограмм – каждый знак



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: