Методика графического определения H–параметров транзистора




Российский государственный социальный университет

Кафедра информационной безопасности и программной инженерии

 

Мальцев

УЧЕБНОЕ МЕТОДИЧЕСКОЕ ПОСОБИЕ

по выполнению лабораторной работы

по учебной дисциплине

"Основы электроники"

 

Тема:

Исследование биполярного транзистора

 

 

Москва

Краткие теоретические сведения

Принцип работы, характеристики и

Параметры транзистора

Транзистор - это трехэлектродный полупроводниковый прибор, структура которого содержит два электронно-дырочных перехода. Транзистор представляет собой монокристаллическую пластину полупроводника, в которой с помощью особых технологических приемов созданы три области, две из них имеют одинаковый тип электропроводности и разделены между собой областью с иной электропроводностью. Эта средняя область называется базой, а две другие, крайние – эмиттером и коллектором.

Эмиттер осуществляет инжекцию (т.е. введение) неосновных носителей зарядов в базу, а коллектор – экстракцию (сбор) носителей. Транзистор, у которого эмиттер и коллектор имеют электропроводность р-типа относятся к p-n-p–типу. Если же база р–типа, а коллектор и эмиттер n-типа, то это транзистор n-p-n-типа (рис.1.1). Так, если коллектор транзистора p-n- p-типа подключается к отрицательному полюсу источника, то коллектор транзистора n-p-n-типа к положительному. В условных графических изображениях эмиттер изображается в виде стрелки, которая указывает прямое направление тока эмиттерного перехода.

Рис.1.1.

Принцип работы транзисторов обоих типов одинаков, различие заключается лишь в том, что в транзисторе n-p-n–типа через базу к коллектору движутся электроны, инжектированные эмиттером, а в транзисторе p-n-p–типа–дырки. Для этого к электродам транзистора подключают источники тока обратной полярности. Принцип работы биполярного транзистора рассмотрим на примере транзистора p-n-p типа включенного по схеме с (ОБ) общей базой (рис.1.2).

Рис. 1.2.

Между р- и n-областями возникают p-n переходы. Переход между эмиттером и базой называется эмиттерным (ЭП), а переход между коллектором и базой - коллекторным (КП). Как показано на рис.1.2, коллекторная цепь транзистора подключается к источнику э.д.с.-Екб т.е. КП смещен в обратном направлении. В коллекторном переходе напряженность поля под действием Екб возрастает. Это приводит к появлению незначительного обратного тока I ко в коллекторной цепи, обусловленного движением неосновных носителей зарядов. Этот ток существенно возрастает с увеличением температуры, поэтому его называют тепловым током коллектора – Iко.

Эмиттерный переход внешним источником напряжения смещен в прямом направлении (ЭП, рис.1.2). Напряженность поля эмиттерного перехода при этом уменьшается. Через эмиттерный переход происходит инжекция дырок из эмиттера в базу и электронов из базы в эмиттер. В цепи эмиттера появится ток, равный сумме токов, обусловленных электронной Iэ(n) и дырочной Iэ(p) электропроводностями:

Iэ = Iэ(n) + Iэ(p) ≈ Iэ(p) (1)

Особенность транзистора состоит, в том, что концентрация дырок в эмиттере намного больше концентрации электронов в базе. Поэтому дырочная составляющая тока эмиттера значительно больше электронной (1). В базе происходит накопление неосновных носителей зарядов–дырок. В результате диффузии дырки перемещаются к коллекторному переходу. Часть дырок при этом рекомбинирует в базе с электронами, что создают ток в цепи базы Iб. Но так как толщина базы очень мала (несколько микрометров), доля рекомбинированных дырок незначительна. Вблизи коллекторного перехода дырки оказываются под действием электрического поля, обратновключенного перехода, увлекаются им через переход в коллекторную область и далее – к выводу коллектора, где рекомбинируют с электронами, поставляемыми через внешнюю цепь источником э.д.с, что создает ток в коллекторной цепи Iк.

Таким образом, ток эмиттера равен сумме токов базы Iб и коллектора Iк:

Iэ = Iк + Iб (2)

Ток коллектора состоит из потока дырок инжектируемых эмиттером за вычетом тока базы и собственного теплового тока коллекторного перехода:

Iк = Iэ(p) – Iб +Iко =α Iэ + Iко, (3)

где α = Iк/Iэ – коэффициент передачи тока эмиттера; Iк0 – тепловой ток обратно включенного коллекторного перехода.

Отсюда ток базы равен:

Iб = Iэ - Iк= (1 – α) Iэ - Iко (4)

Этот ток составляет не более 1% от тока эмиттера.

Все сказанное справедливо также для транзистора n-p-n–типа с учетом высказанных ранее замечаний о перемене на противоположное направление движения токов и смене знаков источников питания схемы транзистора.

В зависимости от того какой из выводов транзистора является общим между входным источником сигнала и выходной цепью транзистора существуют три основные схемы включения транзистора в электрическую цепь: с общим эмиттером (ОЭ), с общим коллектором (ОК), с общей базой (ОБ) (рис. 1.3).

Рис.1.3.

Основными вольтамперными характеристиками транзистора являются входная и выходная характеристики.

Зависимость Uвх1(Iвх)|Uвых =const – называют входной статической вольт–амперной характеристикой (ВАХ), а зависимость Iвых2(Uвых) |Iвх =const выходной статической ВАХ. ВАХ снимают в режиме по постоянному току и представляют собой зависимости постоянных токов и напряжений. Характеристики транзистора зависят от схемы его включения.

Для транзистора включенного по схеме с ОБ это будут соответственно зависимости:

Uэб1(Iэ), при Uкб=const

(5)

Iк2(Uкб), при Iэ=const

Характеристики обычно снимаются при нескольких различных постоянных значениях Iэ и Uкб. При этом получаются семейства статических входных и выходных характеристик, которые представлены на рис.1.4 а, б.

Рис.1.4.

Входной характеристикой для схемы с ОБ является зависимость напряжения Uэб от входного тока Iэ при фиксированном Uкб (рис.1.4а). Эта характеристика подобна обычной характеристике полупроводникового диода смещенного в прямом направлении. При подаче положительного коллекторного напряжения Uкб>0 характеристика смещается влево. Это свидетельствует о наличии в транзисторе внутренней обратной связи, возникающей по ряду причин. Например, увеличение коллекторного напряжения вызывает уменьшение толщины базы, из-за чего увеличивается градиент концентрации основных носителей, что вызывает увеличение тока эмиттера и веерообразное смещение входных характеристик влево.

Выходная характеристика для схемы с ОБ (рис.1.4б) выражает зависимость тока коллектора Iк =f2(Uкб) при заданных входных токах Iэ. Как видно из рис.1.4б при Uкб=0 ток коллектора Iк ¹ 0, т.к. основные носители области эмиттера, инжектированные в базу, дрейфуют через коллекторный p-n-переход в область коллектора. Ток коллектора Iк (ток неосновных носителей) исчезает (обращается в ноль) только при некотором напряжение обратной полярности (при прямом смещении коллекторного перехода).

Незначительный наклон выходных характеристик указывает на высокое омическое сопротивление коллекторного перехода в закрытом состоянии, достигающий десятков и даже сотен кОм.

Рис. 1.5.

Для снятия статических характеристик транзистора с ОБ используется измерительная схема (рис.1.5). Эмиттер питается от регулируемого источника тока Iэ (отрицательной полярности), а на коллектор напряжение подается от регулируемого источника напряжения Uк, причем напряжение должно регулироваться в диапазоне от –1В до +10В, т.к. падающая часть выходной характеристики (режим насыщения транзистора), заходит в область отрицательных коллекторных напряжений (рис.1.4б).

При анализе работы транзистора и расчетах усилительных схем используется система параметров малого сигнала. Наиболее употребительна система h–параметров, связывающая малые приращения (дифференциалы) напряжения на входе транзистора dU1 и выходного тока dI2c малым приращением входного тока dI1 и выходного напряжения dU2 транзистора: dU1=h11dI1 + h12dU2,

(6)

dI2=h21dI1 + h22dU2.

Указанные h-параметры, входящие коэффициентами, в уравнения (6) имеют следующий физический смысл:

h11б = dU1/dI1» DUэб/DIэ, при Uкб= const (7)

дифференциальное входное сопротивление транзистора (индекс Б означает, что h–параметр определен в схеме включения транзистора с ОБ). При токе эмиттера порядка 1мА входное дифференциальное сопротивление h11б по порядку величины составляет десятки Ом:

h12б = dU1/dU2/ » DUэб /DUкб, при Iэ= const (8)

коэффициент обратной связи по напряжению, имеет величину порядка 10 - 5 и, в большинстве случаев, при расчетах этим коэффициентом из-за его малости пренебрегают:

h21б = dI2 /dI1/» D Iк/D Iэ, при Uкб= const (9)

коэффициент передачи тока эмиттера, основной усилительный параметр транзистора. В технической литературе этот параметр часто обознача­ется как a. Значение a всегда меньше единицы (a<1) и имеет порядок величины 0.9¸0.995. Чем ближе a к единице, тем лучше усилительные свойства транзистора:

h22б = dI2 /dU2» D Iк/DUкб, при Iэ= const (10)

выходная проводимость транзистора, в схеме с ОБ имеет величину порядка 10-5 ¸ 10-7 См (1сименс – единица проводимости).

Наиболее часто на практике применяют схему включения транзистора с общим эмиттером ОЭ. При таком включении входным электродом является база, эмиттер заземляется (общий электрод), а выходным электродом по-прежнему является коллектор (рис.1.6).


Рис.1.6.

Основным передаточным параметром для схемы включения с ОЭ является коэффициент усиления тока базы b:

h21э=b = D Iк /D Iб, Uкэ= const (11)

Параметр b связан с коэффициентом передачи тока эмиттера соотношением

b = a/(1- a) (12)

По порядку величина b лежит в интервале значений b=10¸200.

Из остальных h-параметров важное значение имеют входное дифференциальное сопротивление транзистора

h 11э = DUбэ /D Iб, Uкэ=const (13)

и выходная дифференциальная проводимость

h22э = D Iк /DUкэ, Iб= const (14)

Для схемы с ОЭ входное сопротивление единицы составляет единицы кОм, а выходная проводимость - 10-4 -10-5

Входная и выходная характеристики транзистора с ОЭ несколько отличаются от характеристик транзистора с ОБ (см. рис.1.6).

Входной характеристикой транзистора, включенного по схеме с ОЭ, является зависимость напряжения Uбэ от входного тока Iб, Uбэ1(Iб) при заданном напряженииUкэ. Совокупность таких зависимостей называется семейством входных характеристик транзистора (рис.6 б). При Uкэ =0 тепловой ток Iк0 в цепи коллектора отсутствует и зависимостьUбэ1(Iб) соответствует ВАХ эмиттерного р-n–перехода, включенного в прямом направлении. ПриUкэ > 0 в цепи коллектора появляется ток-Iк0, направленный навстречу току Iб. Для компенсации этого тока в цепи базы нужно создать ток Iб=Iк0, приложив соответствующее напряжение Uбэ. Это приводит к смещению входной характеристики вправо вниз.

Выходной характеристикой транзистора по схеме с ОЭ считывается зависимость Iк2(Uкэ)при заданном токе Iб ( рис.1.6в). Если Uбэ=0, в цепи коллектора протекает только тепловой ток, так как в этом случае инжекция дырок из эмиттера в базу (для p-n-p-транзистора Iк0 = -Iб) или инжекция электронов из эмиттера в базу (для n-p-n–транзистора) отсутствует. При Uкэ=0 ток в цепи коллектора не проходит, это объясняется тем, что напряжение Uбэи Uкэнаправлены встречно друг другу, т.е. потенциал коллектора выше потенциала базы и коллекторный переход оказывается при этом закрыт. Поэтому выходные характеристики не пересекают ось ординат.

Рис. 1.7

На рис.1.7 приведена принципиальная схема стенда для снятия вольт-амперных характеристик транзистора, включенного с ОЭ. Входная цепь (цепь базы) питается от регулируемого источника тока I положительной полярности, которой поддерживает заданной ток базы. Величина тока базы Iб измеряется миллиамперметром РА1. Напряжение между эмиттером и базой Uбэ измеряется внешним вольтметром. Напряжение на коллекторе устанавливается от регулируемого источника напряжения Ек. Напряжение коллектора Uкэ измеряется с помощью внешнего вольтметра. Для измерения коллекторного тока Iк служит миллиамперметр РА2.

При работе транзистора с коллекторной нагрузкой Rк связь между коллекторным током Iк и напряжением на коллекторе Uк выражается уравнением нагрузочной характеристики: Iк=(Ек - Uк)/Rк (15)

Нагрузочная характеристика представляет прямую на семействе коллекторных характеристик транзистора (см. рис.7.в), пересекающуюся с осями координат Ек/ Rк и Ек соответственно.

Экспериментально нагрузочную характеристику можно снять посредством регулировки тока базы Iб.

Методика графического определения H–параметров транзистора

Располагая вольт–амперными характеристиками транзистора, можно графическим путем определить низкочастотные значения h-параметров. Для определения h-параметры необходимо задать рабочую точку, например А (IбА, UкэА), в которой требуется найти параметры.

Параметры h11э и h12э находят по входной характеристики Uбэ1(Iб)|Uкэ=const.

Определим h11э для заданной рабочей точки А (IбА, UкэА). На входной характеристике находим точку А, соответствующую заданной рабочей точке (рис.1.8). Выбираем вблизи рабочей точки А две вспомогательные точки А1 и А2 (приблизительно на одинаковом расстоянии), определим по ними DUбэ и DIб и рассчитаем входное дифференциальное сопротивление, по формуле:

h11э=(DUбэ /DIб)|Uкэ=const.

Приращения DUбэ и DIб выбирают так, чтобы не выходить за пределы линейного участка, их можно примерно принять за (10-20)% от значений рабочей точки.

Графическое определение параметра h12э = DUбэ /DUкэ затруднено, так как семейство входных характеристик при различных DUкэ>0 практически сливается в одну (рис.1.8.).

Рис. 1.8

Параметры h22э и h21э определяются из семейства выходных характеристик транзистора Iк1 (Uкэ) (рис.1.9).

Рис. 1.9

Параметр h21э= (DIк /DIб) |Uкэ=const находится в заданной рабочей точке А (IбА, UкэА). Для нахождения приращений выбирают две вспомогательные точки А1 и А2 вблизи рабочей точки А при постоянном Uкэ =Uкэ0. Приращение тока базы DIб следует брать, как DIб=Iб2 – Iб1, где Iб2 и Iб1 определены как токи базы в точках А2 и А1. Этому приращению DIб соответствует приращение коллекторного тока DIк = Iк2 – Iк1, где Iк2 и Iк1.определены в точках точках А2 и А1. Тогда дифференциальный коэффициент передачи тока базы рассчитаем по формуле h21э= (DIк /DIб))|Uкэ=const.

Параметр h22э=(DIк/DUкэIб=const определяется по наклону выходной характеристики (рис.1.9) в заданной рабочей точке А (IбА, UкэА), при постоянном токе базы Iб. Для нахождения приращений выбирают две вспомогательные точки точки А*1 и А*2. Для этих точек определяют DU*кэ|Iб = IбА =Uк2 – Uк1 – приращение коллекторного напряжения, и приращение коллекторного тока DI*к= I*к2 – I*к1. При этом из семейства выходных характеристик следует выбирать ту характеристику, которая снята при выбранном значение тока базы Iб=IбА.

Если рабочая точка не совпадает ни с одной траекторией приведенной на графике, то такую траекторию надо провести самостоятельно, между и по аналогии с соседними значения тока базы которых известно, и присвоить ей свое значение тока базы равное IбА.

 

2. Цели и учебные вопросы лабораторной работы:

Цели лабораторной работы:

· ознакомление с характеристиками биполярного транзистора,

· с методиками их определения для различных схем включения,

· получение навыков практического исследования вольт-амперных характеристик транзистора и определения его параметров.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: