Производящая функция системы функций




Рассмотрим систему функций (с любой общей областью определения), пронумерованных с помощью всех целых чисел:

Составим ряд

,

где – комплексная переменная. Предположим, что при каждом (принадлежащем области определения рассматриваемых функций) этот ряд имеет кольцо сходимости, содержащее внутри себя единичную окружность . В частности, это кольцо может представлять собой полную плоскость комплексной переменной без точек 0 и ∞.

Функция

(16)

(где x лежит в области определения функций системы , – внутри кольца сходимости, соответствующего рассматриваемому значению ) называется производящей функцией системы .

Обратно, пусть задана функция , где пробегает некоторое множество, находится внутри некоторого кольца, зависящего от , с центром 0 и содержащего внутри себя единичную окружность. Тогда, если при каждом аналитична относительно внутри соответствующего кольца, то есть производящая функция некоторой системы функций. В самом деле, разложив при каждом функцию в ряд Лорана по степеням :

,

найдем, что система коэффициентов этого ряда будет искомой системой .

Формулы для коэффициентов ряда Лорана позволяют выразить функции рассматриваемой системы через производящую функцию. Применяя эти формулы и преобразовывая затем интеграл вдоль единичной окружности в простой интеграл, получим:

. (17)

Производящая функция системы бесселевых функций с целыми индексами

Покажем, что для системы бесселевых функций первого рода с целыми индексами ( …) производящая функция есть:

.

Имеем:

, ,

откуда после почленного перемножения этих равенств найдем:

(так как в предпоследней внутренней сумме и были связаны зависимостью , то мы могли положить , получив суммирование по одному индексу ). В последней внутренней сумме суммирование производится по всем целым , для которых , следовательно, при это будет ; при это будет . Таким образом, во всех случаях внутренняя сумма есть в силу формул (5`) и (5```). Итак,

, (18)

но это и доказывает, что есть производящая функция для системы .

Выведем некоторые следствия из формулы (18). Полагая в ней , получим:

,

откуда после разделения действительной и мнимой части (учитывая, что )

(18`)

(18``)

Заменяя в (18`) и (18``) на , найдем:

, (18```)

. (18````)

Интегральное представление Jn(x)

Так как, по доказанному, при имеем , то по формуле (17) получаем (используя в преобразованиях формулы Эйлера):

где принято во внимание, что есть четная функция от есть нечетная функция от . Итак, доказано, что для любого целого числа

. (19)

Формула (19) дает представление бесселевых функций с целым индексом в виде определенного интеграла, зависящего от параметра . Эта формула называется интегральным представлением Бесселя для , правая часть формулы называется интегралом Бесселя. В частности, при найдем:

. (19`)


Ряды Фурье-Бесселя

 

Рассмотрим на каком-либо интервале (конечном или бесконечном) два дифференциальных уравнения

, , (20)

где и – непрерывные функции на . Пусть и – ненулевые решения этих уравнений. Умножение на и на и последующее вычитание дают

.

Пусть и принадлежат и , тогда после интегрирования в пределах от до получим

. (21)

Если и – соседние нули решения , то между и сохраняет постоянный знак, пусть, например, на (, ) (в противном случае следует заменить на ), тогда , (равенство нулю исключено, так как – ненулевое решение дифференциального уравнения второго порядка). Если на , то должна, по крайней мере, раз обращаться в нуль между и , так как иначе сохранит постоянный знак на (, ). Пусть, например, на (, ) (в противном случае заменяем на ), и тогда из (21) получим противоречие, ибо левая часть ≤0, а правая >0. Таким образом доказана теорема сравнения Штурма: если P(x)<Q(x) на рассматриваемом интервале I и если y и z – ненулевые решения уравнений (20), то между каждыми двумя соседними нулями y(x) находится по крайней мере один нуль z(x).

Из теоремы сравнения Штурма вытекают нижеследующие следствия. Если на , то каждое ненулевое решение уравнения может иметь на не более одного нуля (это легко видеть, если положить и взять ). Если на (где ), то для всяких двух соседних нулей и () каждого ненулевого решения уравнения имеем (это легко видеть, если положить , взять и заметить, что нулями будут только числа вида , целое). Если на (где ), то для всяких двух соседних нулей каждого ненулевого решения уравнения имеем (это легко видеть, если положить и взять ). Из сказанного следует, что если на , то для всяких двух соседних нулей и () каждого ненулевого решения уравнения имеем .

Изложенное показывает, что если непрерывна на и превышает некоторое положительное число вблизи +∞, то каждое ненулевое решение уравнения имеет на бесконечно много нулей. Если еще вблизи не обращается в нуль, то эти нули образуют бесконечную возрастающую последовательность , имеющую пределом +∞, а если, кроме того, , где , то .

Рассмотрим уравнение Бесселя

на интервале . Подстановка приводит к уравнению

.

Очевидно, и имеют одни и те же нули. Так как , где – целая функция, то не имеет нулей на при достаточно малом , и так как при , то при каждом нули на образуют бесконечную возрастающую последовательность

причем .

Если , то удовлетворит уравнению

на интервале (0, +∞). Подстановка приводит к уравнению

и, следовательно, удовлетворяет этому уравнению. Таким образом, при любых положительных и имеем

, где ,

, где ,

откуда

,

следовательно,

, где . (22)

Пусть теперь . Разложение по степеням начинается с члена, содержащего , разложение по степеням начинается с члена, содержащего , так как коэффициент при равен нулю, что легко видеть, исходя из формулы (5). Следовательно, из (22) при получим

,

то есть

, (23)

откуда видно, что если и являются разными нулями функции , то

. (23`)

Этим доказано, что при система функций

на интервале является ортогональной относительно веса .

Переходя к пределу при в соотношении

и используя правило Лопиталя, получим при всяком

, (24)

следовательно, если является нулем функции , то

. (24`)

Таким образом, при каждом всякой непрерывной функции на , удовлетворяющей требованию

,

поставлен в соответствие ряд Фурье-Бесселя

, (25)

коэффициенты которого определяются формулами

. (25`)

Можно доказать, что система функций на , ортогональная относительно веса , замкнутая. В частности, если ряд Фурье-Бесселя (25) равномерно сходится к порождающей его непрерывной функции .

Можно показать, что если и непрерывная на и кусочно-гладкая на функция, то ряд Фурье-Бесселя этой функции сходится к ней при .

Свойства

Асимптотика

Для функций Бесселя известны асимптотические формулы. При маленьких аргументах и неотрицательных α они выглядят так:

,

где γ — постоянная Эйлера — Маскерони (0.5772…), а Γ — гамма-функция Эйлера. Для больших аргументов () формулы выглядят так:

 

Гипергеометрический ряд

Функции Бесселя могут быть выражены через гипергеометрическую функцию:

Таким образом, при целых n функция Бесселя однозначная аналитическая, а при нецелых — многозначная аналитическая.

Производящая функция

Существует представление для функций Бесселя первого рода и целого порядка через коэффициенты ряда Лорана функции определённого вида, а именно



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: