Дисциплины обслуживания. Модель с приоритетами




Лекция №14

По дисциплине “Теория распределение информации»

Наименование темы: 1.Система типа G/G/1

Дисциплины обслуживания. Модель с приоритетами

Система типа G/G/1

Система типа G/G/1-этот класс систем предполагает, что как распределение интервалов времени между поступлением входных заявок-требований, так и распределение времени обслуживания в сервере описываются произвольными функциями плотности вероятности. Обозначим функцию плотности вероятности входного потока заявок a(t), а функцию плотности вероятности времени обслуживания b(x). Рассмотрим последовательность поступающих заявок на обслуживание - требований, пронумерованных индексами и вспомним обозначения, введенные ранее.

Cn - n -е требование, поступающее в систему,

tn - промежуток времени между поступлениями n -го и n -1 требований, плотность вероятности a(t) - не зависит от n.

xn - время обслуживания n -го требования, плотность вероятности b(x) -также не зависит от n,

wn - время ожидания n - го требования в очереди.

Напомним определение незавершенной работы для системы массового обслуживания. По определению незавершенная работа в каждый момент времени - это остаточное время, необходимое для освобождения системы от всех требований, находящихся в ней к этому моменту. Очевидно, что для системы G/G/1 значение незавершенной работы непосредственно перед поступлением n-го требования в точности равно времени wn. Таким образом, последовательность этих значений будет образовывать дискретную марковскую цепь, вероятности переходов которой могут быть определены по характеристикам входного потока и времени обслуживания. Зная эти переходные вероятности можно найти все характеристики изучаемой СМО. Рассмотрим два случая поступления требования Сn в систему - поступление в занятую систему (Рис. 1) и в свободную систему (Рис. 2).

Рис. 1 Случай, когда требование Cn+1 поступает в занятую систему.

Рис. 2 Случай, когда требование Cn+1 поступает в свободную систему.

Нетрудно видеть, что для первого случая

.

Для второго случая .

Определим случайную величину, равную разности между временем обслуживания требования с номером n и промежутком времени между поступлениями n +1 и n -го требований .

Фундаментальное свойство этой случайной величины состоит в том, что для стабильных СМО, т.е. имеющих стационарное распределение вероятностей состояний, ее математическое ожидание должно быть отрицательным. Смысл этого утверждения понятен из определения. Очевидно, что в среднем время обслуживания должно быть меньше времени между поступлениями соседних требований. Используя эту величину можно записать выражение для рекуррентного определения величин wn в компактном виде

Решая это уравнение последовательно, начиная с нулевого требования, можно получить

.

Условие стабильности М<un> <0, может быть записано в более привычной форме:

При выполнении этого условия будет существовать стационарное распределение вероятностей

Эта функция распределения может быть записана через искомую плотность вероятности для времени ожидания в очереди

.

Для ее нахождения Линдли получил интегральное уравнение, носящее его имя.

Функция c(u) определяется в свою очередь интегралом, похожим на свертку плотностей вероятности входного потока заявок и времени обслуживания

.

Решить уравнение Линдли в общем случае не удается. Если ввести преобразования Лапласа от функций плотности вероятности

то удается записать:

 

Дисциплины обслуживания. Модель с приоритетами

Дисциплина обслуживания – это способ определения того, какое требование в очереди должно обслуживаться следующим. Решение может основываться на одной из приведенных ниже характеристик или на их совокупности:

1) мера, определяемая относительным временем поступления рассматриваемого требования в очередь;

2) мера требуемого или полученного до сих пор времени обслуживания;

3) функция, определяющая принадлежность требования к той или иной группе.

Примерами дисциплин обслуживания являются постоянно используемая модель «первый пришел - первый обслужен» (FCFS-first came-first served), называемая в русскоязычной литературе «дисциплина обслуживания в порядке поступления»-ОПП. Приведем здесь список некоторых типичных дисциплин обслуживания.

ОПП-обслуживание в порядке поступления (FCFS);

ООП – обслуживание в обратном порядке, т.е. последнее поступившее требование обслуживается первым (LCFS);

ПК – первоочередное обслуживание требований с кратчайшей длительностью обслуживания (SPT/SJE);

ПКД – первоочередное обслуживание требований с кратчайшей длительностью дообслуживания (SRPT);

ПКС – первоочередное обслуживание требований с кратчайшей средней длительностью обслуживания (SEPT);

ПКСД – первоочередное обслуживание требований с кратчайшей средней длительностью дообслуживания (SERPT);

ПКОВ – первоочередное обслуживание требований с кратчайшим обязательным временем (SIPT).

Если сравнивать эти дисциплины по среднему времени ожидания попарно, и обозначать тот факт, что среднее время ожидания для дисциплины D1,больше или равно среднему времени ожидания для дисциплины D2 следующим образом: D1®D2, то можно построить следующую диаграмму

 

ПО ® ОПП ® ПК ® ПКД

¯ ­

¯ ® ОП ®®®® ­

Итак, основным предметом анализа различных дисциплин обслуживания будем считать расчет среднего времени ожидания требования в очереди или среднего времени пребывания в системе.

Предположим, что требования принадлежат одному из P различных приоритетных классов, обозначаемых индексом p =1,2,3… P. Каждому требованию, находящемуся в системе в момент времени t ставится в соответствие значение некоторой приоритетной функции qp(t). Чем больше значение этой функции, тем выше приоритет требования. Всякий раз, когда принимается решение для выбора требования на обслуживание, выбор делается в пользу требования с наибольшим значением приоритетной функции. В простейшем случае в качестве приоритетной функции выбирается просто значение p. В этом случае приоритет требования тем больше, чем больший номер класса принадлежности оно имеет. Рассмотрим достаточно общую модель, основанную на системе M/G/1. Предположим, что требования из приоритетного класса p образуют пуассоновский поток с интенсивностью lp требований в секунду. Время обслуживания каждого требования из этого класса выбирается независимо в соответствие с распределением с плотностью вероятности bp(x) со средним значением

.

Введем следующие определения

Здесь r интерпретируется как доля времени, в течение которого сервер занят (r <1), а каждый из парциальных коэффициентов rp – как доля времени, в течение которого сервер занят обслуживанием заявок из приоритетного класса с номером p.

Если требование в процессе обслуживания может быть удалено из сервера и возвращено в очередь при поступлении требования с более высоким приоритетом, то говорят, что система работает с абсолютным приоритетом, если обслуживание любого требования, находящегося в сервере не может быть прервано, то говорят что СМО работает с относительным приоритетом.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: