Непрерывность функции на отрезке




Свойства непрерывной функции на отрезке

Функцию y = f(x) называют непрерывной на отрезке [a, b], если она непрерывна во всех внутренних точках этого отрезка, а на его концах, т.е. в точках a и b, непрерывна соответственно справа и слева.

 

Теорема 1. Функция, непрерывная на отрезке [a, b], хотя бы в одной точке этого отрезка принимает наибольшее значение и хотя бы в одной – наименьшее.

 

Теорема утверждает, что если функция y = f(x) непрерывна на отрезке [a, b], то найдётся хотя бы одна точка x1 Î [a, b] такая, что значение функции f(x) в этой точке будет самым большим из всех ее значений на этом отрезке: f(x1) ≥ f(x). Аналогично найдётся такая точка x2, в которой значение функции будет самым маленьким из всех значений на отрезке: f(x1) ≤ f(x).

 

 

Теорема 2. Пусть функция y = f(x) непрерывна на отрезке [a, b] и на концах этого отрезка принимает значения разных знаков, тогда внутри отрезка [a, b] найдется, по крайней мере, одна точка x = C, в которой функция обращается в ноль: f(C) = 0, где a < C< b

 

Теорема 3 (теорема о промежуточных значениях). Пусть функцияy = f(x) непрерывна на отрезке [a, b] и f(a) = A, f(b) = B. Тогда для любого числа C, заключённого между A и B, найдётся внутри этого отрезка такая точка CÎ [a, b], что f(c) = C.

 

Следствие. Если функция y = f(x) непрерывна на некотором интервале и принимает наибольшее и наименьшее значения, то на этом интервале она принимает, по крайней мере, один раз любое значение, заключённое между её наименьшим и наибольшим значениями.

 

Непрерывность функции на отрезке

 

Наряду с непрерывностью функции в точке рассматривают ее непрерывность на разных промежутках.

Функция f(x) называется непрерывной на интервале (a, b), если она непрерывна в каждой точке этого интервала.

Функция f(x) называется непрерывной на отрезке [a, b], если она непрерывна на интервале (a, b), непрерывна справа в точке a и непрерывна слева в точке b.

Замечание. Функция, непрерывная на отрезке [a,b] может быть разрывной в точках a и b (рис. 1)

 

 

Множество функций, непрерывных на отрезке [a, b] обозначается символом C[a, b].

Свойства функций, непрерывных на отрезке

 

Теорема 1 (об ограниченности непрерывной функции). Если функция f(x) непрерывна на отрезке [a, b], то она ограничена на этом отрезке, т.е. существует такое число C> 0, что "x О [a, b] выполняется неравенство |f(x)| ≤ C.

 

Теорема 2 (Вейерштрасс). Если функция f(x) непрерывна на отрезке [a, b], то она достигает на этом отрезке своего наибольшего значения M и наименьшего значения m, т.е. существуют точки α, β О [a, b] такие, что m = f(α) ≤ f(x) ≤ f(β) = M для всех x О [a, b] (рис.2).

 

 

Наибольшее значение M обозначается символом maxx О [a, b] f(x), а наименьшее значение m — символом minx О [a, b] f(x).

Теорема 3 (о существовании нуля). Если функция f(x) непрерывна на отрезке [a, b] и на концах отрезка принимает ненулевые значения разных знаков, то на интервале (a, b) найдется по крайней мере одна точка ξ в которой f(ξ) = 0.

Геометрический смысл теоремы состоит в том, что график функции, удовлетворяющей условиям теоремы, обязательно пересечет ось OX (рис.3).

 

 

Замечание. На этой теореме основан метод приближенного решения уравнения f(x) = 0, (1) называемый методом бисекции (дихотомии), или методом половинного деления.

 

Схема решения уравнения методом половинного деления

 

Отделяем корни уравнения (1). Для этого устанавливаем промежутки, в которых функция f(x) имеет единственный нуль и на его концах принимает значения разных знаков. С этой целью используем графические построения или составляем таблицу значений функции. Обозначим такой отрезок символом σ0.

Разделим этот отрезок пополам. Если в середине отрезка функция f(x) равна нулю, уравнение (1) решено. В противном случае на концах одного из полученных половинных отрезков f(x) вновь принимает значения разных знаков. Обозначим этот отрезок символом σ1 и вновь разделим его пополам. Если в середине σ1 функция f(x) равна нулю, то уравнение (1) решено. В противном случае продолжим указанную процедуру. Таким образом, мы либо на каком–то этапе получим точку, в которой f(x) = 0, т.е. точное решение уравнения (1), либо получим последовательность вложенных друг в друга отрезков σ0 Й σ1 Й …, на каждом из которых f(x) имеет значения разных знаков. В этом случае можно заключить искомый корень уравнения (1) в промежуток произвольной длины и, следовательно, вычислить этот корень с любой заданной точностью.

 

Замечание. Метод неприменим для отыскания корней четной кратности.

 

Теорема 4 (Больцано–Коши). Если функция f(x) непрерывна на отрезке [a, b], то она принимает на (a,b) все промежуточные значения между f(a) и f(b).

 

Доказательства теорем приведены в книге Л.Д. Кудрявцева “Краткий курс математического анализа”. Т.1. М.: ФИЗМАТЛИТ, 2002. Стр.122–124.

 

Cуществование непрерывной обратной функции

Пусть функция y = f(x) определена, строго монотонна и непрерывна на отрезке [a,b]. Тогда на отрезке [α, β] (α = f(© 2008-2012

 

 

Теорема Ферма.

Если функция у = f (х), определенная в интервале (а; b), достигает в некоторой точке с этого интервала наибольшего (или наименьшего) значения и существует производная f ′(с), то f ′(с) = 0.

 

Геометрический смысл этой теоремы состоит в том, что касательная к графику функции у = f (х) в точке с абсциссой с параллельна оси абсцисс (рис.).

 

 

Теорема Лагранжа. Если функция у = f (х) непрерывна на отрезке [а; b] и дифференцируема в интервале (а; b), то в этом интервале найдется такая точка с, что

 

Эта теорема имеет простой геометрический смысл (рис.): на графике функции у = f (х) между точками А и В найдется такая внутренняя точка С, что касательная к графику в точке С

 

параллельна хорде АВ.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: