Эфферентное торможение улитки




 

Как и мышечные веретена, слуховые рецепторы подвергаются эфферентной регуляции. Нейроны комплекса верхних олив (olivary complex) в стволе мозга млекопитающих проецируются на ипсилатералъную и контралатеральную улитку. Активация этого пути вызывает высвобождение ацетилхолина в эфферентных синапсах на волосковых клетках и подавляет ответы на звук в афферентных волокнах улитки. Эфферентная обратная связь снижает чувствительность улитки при наличии фонового шума и снижает риск перегрузки. Это — аналог переустановки чувствительности мышечного веретена гамма-эфферентами, поддерживающими поток информации во время движения конечности в широком диапазоне положений. Эфферентные волокна активируются звуком и иннервируют ограниченные области улитки; в результате подавление шума носит частотно-специфический характер. В дополнение к восстановлению динамического диапазона торможение расширяет кривую настройки афферентных волокон. Наконец, эфферентная обратная связь может защитить улитку от повреждения громким звуком. Фактически, сила эфферентной обратной связи находится в обратном соотношении со степенью акустического повреждения, вызванного громким звуком.

Активация эфферентного пути к уху черепахи вызывает большие гиперполяризирующие тормозные постсинаптические потенциалы (IPSP) в волосковых клетках. Влияние торможения на ответ волосковой клетки на звук показан на рис. 3А. Клетка была стимулирована чистыми тонами на трех частотах, одна из которых является оптимальной для данной болосковой клетки, вторая — более высокой частотой, и третья — более низкой частотой. Интенсивности тонов были отрегулированы так, что все они вызывали осциллирующий рецепторный потенциал одной и той же амплитуды. Короткая серия стимулов, поданная на эфферентное волокно, гиперполяризировала клетку и сильно ослабила ее ответ на тон при 220 Гц (характеристическая частота).

 

Рис. 3. Влияние эфферентной стимуляции волосковых клеток улитки на звуковые стимулы. (А) Средняя запись: осцилляторный ответ волосковой клетки на звуковой стимул частотой 220 Гц (резонансная частота) тормозится короткой пачкой эфферентных стимулов (обозначено полоской), и клетка гиперполяризуется. Верхняя запись: ответ на звуковой стимул при 70 Гц. Интенсивность стимула подобрана таким образом, что осцилляторный ответ был близок по амплитуде ответу на звуковой стимул частотой 220 Гц. Эфферентная стимуляция также вызывает гиперполяризацию, однако не ослабляет, а, наоборот, усиливает осцилляторный ответ. Нижняя запись: то же при частоте 857 Гц, однако этот ответ не изменяется при эфферентной стимуляции. (В) Чувствительность другой волосковой клетки (в мВ на единицу звукового давления) показана как функция частоты при эфферентной стимуляции (серым цветом) и в ее отсутствии (черным). Эфферентное торможение снижает ответ при резонансной частоте и повышает чувствительность на более низких частотах, в результате чего настройка нарушается.  

 

На более низкой и высокой частотах акустической стимуляции активация эфферентов по-прежнему приводила к гиперполяризации, но низкочастотная осцилляция даже увеличивалась по амплитуде, тогда как на высоких частотах амплитуда была неизменна. Этот дифференциальный эффект торможения приводит к расширению частотного диапазона ответов волосковых клеток (рис. 3В).

Механизм холинергического торможения был исследован в волосковых клетках цыпленка. Ацетилхолиновые (АХ) рецепторы

 

Рис. 4. Электрическая подвижность наружных вол сковых клеток. Для фиксации мембранного потенциала наружных волосковых клеток, изолированных из улитки позвоночных, были использованы пэтч пипетки Деполяризация приводила к укорочению клеток; гилерполяризация делала их длиннее. Такие изменения длины могли быть достаточно веяики, достигая 30 нм/мВ.  

 

являются лиганд-регулируемыми катионными каналами, через которые натрий и кальций входят в клетку, приводя к активации кальцийзависимых калиевых каналов и к гиперполяризации мембраны. Подобный холинергический механизм торможения обнаружен в волосковых клетках млекопитающих. Ответы волосковых клеток на АХ блокируются бунгаротоксином, и есть надежное доказательство того, что необычный член семейства никотиновых рецепторов является лиганд-связующей субъединицей АХ рецептора волосковой клетки.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: